Advertisement

Protein—Tyrosine Kinases and Their Substrates

Old Friends and New Faces
  • Tony Hunter
  • Kathleen L. Gould
  • Richard A. Lindberg
  • Jill Meisenhelder
  • David S. Middlemas
  • David P. Thompson
Part of the New Horizons in Therapeutics book series (NHTH)

Abstract

Protein phosphorylation, through its ability to increase or decrease the activity of proteins, plays a central role in cellular regulation. Most proteins known to be regulated by phosphorylation are substrates for both a protein kinase and a protein phosphatase. Indeed, the ready reversibility of protein phosphorylation makes it ideally suited for rapid responses. Protein phosphorylation is used extensively in the internal cellular response pathways to external stimuli. Receptor-mediated recognition of hormones, growth factors, and neurotransmitters is commonly transduced across the plasma membrane through the activation of intracellular protein kinases. Many of the surface receptors for peptide mitogens are themselves membrane-spanning protein kinases consisting of an external ligand-binding domain and a cytoplasmic protein kinase domain (for review, see Yarden and Ullrich, 1988). The EGF, PDGF, and CSF-1 receptors are examples of this type. In these cases signal transduction is a direct result of activation of the receptor protein kinase upon binding of the growth factor.

Keywords

Catalytic Domain Tyrosine Phosphorylation Rous Sarcoma Virus Chicken Embryo Fibroblast Protein Kinase Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bolen, J. B., Thiele, C. J., Israel, M., Yonemoto, W., Lipsich, L. A., and Brugge, J. S., 1984, Enhancement of cellular src gene product tyrosyl kinase activity following polyoma virus infection, Cell 38: 767–777.PubMedCrossRefGoogle Scholar
  2. Brugge, J. S., Cotton, P. C., Queral, A. E., Barrett, J. N., Nonner, D., and Keane, R. W., 1985, Neurones express high levels of a structurally modified activated form of pp60c-sr’ Nature 316: 554–557.PubMedCrossRefGoogle Scholar
  3. Brugge, J., Cotton, P., Lustig, A., Yonemoto, W., Lipsich, L., Coussens, P., Barrett, J. N., Nonner, D., and Keane, R., 1987, Characterization of the altered form of the c-src gene product in neuronal cells, Genes Dey. 1: 287–296.CrossRefGoogle Scholar
  4. Cartwright, C. A., Simantov, R., Kaplan, P. L., Hunter, T., and Eckhart, W., 1987, Alterations in pp60°-s’c accompany differentiation of neurons from rat embryo striatum, Mol. Cell. Biol. 7: 1830–1840.PubMedGoogle Scholar
  5. Cartwright, C. A., Simantov, R., Cowan, W. M., Hunter, T., and Eckhart, W., 1988, pp60°-src expression in the developing rat brain, Proc. Natl. Acad. Sci. USA 85: 3348–3352.Google Scholar
  6. Chackalaparampil, I., and Shalloway, D., 1988, Altered phosphorylation and activation of pp60°-sr°during fibroblast mitosis, Cell 52: 801–810.PubMedCrossRefGoogle Scholar
  7. Charbonneau, H., Tonks, N. K., Walsh, K. A., and Fischer, E. A., 1988, The leukocyte common antigen (CD45): A putative receptor-linked protein—tyrosine phosphatase, Proc. Natl. Acad. Sci. USA 85: 7182–7186.PubMedCrossRefGoogle Scholar
  8. Cohen, P., 1988, Protein phosphorylation and hormone action, Proc. Roy. Soc. Lond. B 234: 115144.Google Scholar
  9. Collett, M. S., Erikson, E., and Erikson, R. L., 1979, Structural analysis of the avian sarcoma virus transforming protein: Sites of phosphorylation, J. Virol. 29: 770–781.PubMedGoogle Scholar
  10. Cooper, J. A., 1990, The src-family of protein-tyrosine kinases, in: Peptides and Protein Phos-phorylation ( B. Kemp and P. Alewood, eds.), CRC Press, Orlando, FL, pp. 85–113.Google Scholar
  11. Cooper, J. A., and Hunter, T., 1981, Changes in protein phosphorylation in Rous sarcoma virus transformed cells, Mol. Cell. Biol. 1: 165–178.PubMedGoogle Scholar
  12. Cooper, J. A., and King, C. S., 1986, Dephosphorylation or antibody binding to the carboxy terminus stimulates pp60c-s’, Mol. Cell. Biol. 6: 4467–4477.PubMedGoogle Scholar
  13. Cooper, J. A., Reiss, N. A., Schwartz, R. J., and Hunter, T., 1983, Three glycolytic enzymes are phosphorylated at tyrosine in cells transformed by Rous sarcoma virus, Nature 302: 218–223.PubMedCrossRefGoogle Scholar
  14. Cooper, J. A., Gould, K. L., Cartwright, C. A., and Hunter, T., 1986, Tyr527 is phosphorylated in pp60c-s’: Implications for regulation, Science 231: 1431–1433.PubMedCrossRefGoogle Scholar
  15. Courtneidge, S. A., 1985, Activation of the pp60c-sr“ kinase by middle T antigen binding or by dephosphorylation, EMBO J. 4: 1471–1477.PubMedGoogle Scholar
  16. Courtneidge, S. A., and Heber, A., 1987, An 81 kd protein complexed with middle T antigen and pp60c-sri: A possible phosphatidylinositol kinase, Cell 50: 1031–1037.PubMedCrossRefGoogle Scholar
  17. Courtneidge, S. A., and Smith, A. E., 1983, Polyoma virus transforming protein associates with the product of the cellular src gene, Nature 303: 435–439.PubMedCrossRefGoogle Scholar
  18. Crompton, M. R., Moss, S. E., and Crumpton, M. J., 1988, Diversity in the lipocortin/calpactin family, Cell 55: 1–3.PubMedCrossRefGoogle Scholar
  19. Cross, F. R., and Hanafusa, H., 1983, Local mutagenesis of Rous sarcoma virus: The major sites of tyrosine and serine phosphorylation of pp60s“ are dispensable for transformation, Cell 34: 597607.Google Scholar
  20. DeClue, J. E., and Martin, G. S., 1987, Phosphorylation of talin at tyrosine in Rous sarcoma virus transformed cells, Mol. Cell Biol. 7: 371–378.PubMedGoogle Scholar
  21. DeClue, J. E., Sadowski, I., Martin, G. S., and Pawson, T., 1987, A conserved domain regulates interactions of the v fps protein-tyrosine kinase with the host cell, Proc. Natl. Acad. Sci. USA 84: 9064–9068.PubMedCrossRefGoogle Scholar
  22. Fava, R. A., and Cohen, S., 1984, Isolation of a calcium-dependent 35-kilodalton substrate for the epidermal growth factor receptor/kinase from A-431 cells, J. Biol. Chem. 259: 2636–2645.PubMedGoogle Scholar
  23. Gould, K. L., and Hunter, T., 1988, Platelet-derived growth factor induces multisite phosphorylation of pp60°-src and increases its protein—tyrosine kinase activity, Mol. Cell. Biol. 8: 3345–3356.PubMedGoogle Scholar
  24. Gould, K. L., and Hunter, T., 1989, AtT20 cells express modified forms of pp60’-s“ Mol. Endo-crinol. 3: 79–88.Google Scholar
  25. Gould, K. L., Woodgett, J. R., Cooper, J. A., Buss, J. E., Shalloway, D., and Hunter, T. 1985, Protein kinase C phosphorylates pp6fP’ at a novel site, Cell 42: 849–857.PubMedCrossRefGoogle Scholar
  26. Gould, K. L., Cooper, J. A., Bretscher, A., and Hunter, T., 1986, The protein-tyrosine kinase substrate, p81, is homologous to a chicken microvillar core protein, J. Cell. Biol. 102: 660–669.Google Scholar
  27. Hanks, S. K., 1987, Homology probing: Identification of cDNA clones encoding members of the protein—serine kinase family, Proc. Natl. Acad. Sci. USA 84: 388–392.PubMedCrossRefGoogle Scholar
  28. Hanks, S. K., Quinn, A. M., and Hunter, T., 1988, The protein kinase family; Conserved features and deduced phylogeny of the catalytic domains, Science 241: 42–52.PubMedCrossRefGoogle Scholar
  29. Hirai, H., Maru, Y., Hagiwara, K., Nishida, J., and Takaku, F., 1987, A novel putative tyrosine kinase receptor encoded by the eph gene, Science 238: 1717–11719.PubMedCrossRefGoogle Scholar
  30. Hirota, Y., Kato, J.-Y., and Takeya, T., 1988, Substitution of Ser-17 of pp60°-sri: Biological and biochemical characterization in chicken embryo fibroblasts, Mol. Cell. Biol. 8: 1826–1830.PubMedGoogle Scholar
  31. Hirst, R., Horwitz, A., Buck, C., and Rohrschneider, L., 1986, Phosphorylation of the fibronectin receptor complex in cells transformed by oncogenes that encode tyrosine kinases, Proc. Natl.Acad. Sci. USA 83: 6470–6474.PubMedCrossRefGoogle Scholar
  32. Hunter, T., 1987a, A tail of two src’s: Mutatis mutandis, Cell 49: 1–4.PubMedCrossRefGoogle Scholar
  33. Hunter, T., 1987b, A thousand and one protein kinases, Cell 50: 823–829.PubMedCrossRefGoogle Scholar
  34. Hunter, T., and Cooper, J. A., 1985, Protein-tyrosine kinases, Annu. Rev. Biochem. 54: 897–930.PubMedCrossRefGoogle Scholar
  35. Kamps, M. P., and Sefton, B. M., 1988, Identification of multiple novel polypeptide substrates of the v-src, v-yes, v-fps, v-ros, and v-erb-B oncogenic tyrosine protein kinases utilizing antisera against phosphotyrosine, Oncogene 2: 305–315.PubMedGoogle Scholar
  36. Kaplan, D. R., Whitman, M., Schaffhausen, B., Pallas, D. C., White, M., Cantley, L., and Roberts, T. M., 1987, Common elements in growth factor stimulation and oncogenic transformation: 85 kd phosphoprotein and phosphatidylinositol kinase activity, Cell 50: 1021–1029.PubMedCrossRefGoogle Scholar
  37. Kipreos, E. T., Lee, G. J., and Wang, J. Y. J., 1987, Isolation of temperature-sensitive mutants of v-abl oncogene by screening with antibodies for phosphotyrosine, Proc. Natl. Acad. Sci. USA 84: 1345–1349.PubMedCrossRefGoogle Scholar
  38. Kmiecik, T. E., Johnson, P. J., and Shalloway, D., 1988, Regulation by the autophosphorylation site in overexpressed pp60°-src, Mol. Cell. Biol. 8: 4541–4546.PubMedGoogle Scholar
  39. Letterio, J. J., Coughlin, S. R., and Williams, L. T., 1986, Pertussis toxin-sensitive pathway in the stimulation of c-myc expression and DNA synthesis by bombesin, Science 234: 1117–1119.PubMedCrossRefGoogle Scholar
  40. Letwin, K., Yee, S-P., and Pawson, T., 1988, Novel protein-tyrosine kinase cDNAs related to fps, fes and eph cloned using anti-phosphotyrosine antibody, Oncogene 3: 621–627.PubMedGoogle Scholar
  41. Lindberg, R. A., Thompson, D. P., and Hunter, T., 1988, Identification of cDNA clones that code for protein-tyrosine kinases by screening expression libraries with antibodies against phosphotyrosine, Oncogene 3: 629–633.PubMedGoogle Scholar
  42. Lynch, S. A., Brugge, J. S., and Levine, J. M., 1986, Induction of altered c-src gene product during differentiation of embryonal carcinoma cells, Science 234: 873–876.PubMedCrossRefGoogle Scholar
  43. Martins, T. J., Sugimoto, Y., and Erikson, R. L., 1989, Dissociation of inositol trisphosphate from diacylglycerol production in Rous sarcoma virus-transformed fibroblasts, J. Cell Biol. 108: 683691.Google Scholar
  44. Mayer, B. J., Hamaguchi, M., and Hanafusa, H., 1988, A novel viral oncogene with structural similarity to phospholipase C, Nature 332: 272–275.PubMedCrossRefGoogle Scholar
  45. Neer, E. J., and Clapham, D. E., 1988, Roles of G protein subunits in transmembrane signalling, Nature 333: 129–134.PubMedCrossRefGoogle Scholar
  46. Pasquale, E. B., Maher, P. A., and Singer, S. J., 1986, Talin is phosphorylated on tyrosine in chicken embryo fibroblasts transformed by Rous sarcoma virus, Proc. Natl. Acad. Sci. USA 83: 5507–5511.PubMedCrossRefGoogle Scholar
  47. Patschinsky, T., Hunter, T., and Sefton, B. M., 1986, Phosphorylation of the transforming protein of Rous sarcoma virus: direct demonstration of phosphorylation of serine 17 and identification of an additional site of tyrosine phosphorylation in pp60v-src of Prague Rous sarcoma virus, J. Virol. 59: 73–81.PubMedGoogle Scholar
  48. Pawson, T., 1988, Non-catalytic domains of cytoplasmic protein—tyrosine kinases: Regulatory elements in signal transduction, Oncogene 3: 491–495.PubMedGoogle Scholar
  49. Radke, K., and Martin, G. S., 1979, Transformation by Rous sarcoma virus: effects of src gene on the synthesis and phosphorylation of cellular polypeptides, Proc. Natl. Acad. Sci. USA 76: 5212–5216.PubMedCrossRefGoogle Scholar
  50. Ralston, R., and Bishop, J. M., 1985, The product of the protooncogene c-src is modified during the cellular response to platelet-derived growth factor, Proc. Natl. Acad. Sci. USA 82: 7845–7849.PubMedCrossRefGoogle Scholar
  51. Ray, L. B., and Sturgill, T. W., 1988, Insulin-stimulated microtubule-associated protein kinase is phosphorylated on tyrosine and threonine in vivo, Proc. Natl. Acad. Sci. USA 85: 3753–3757.PubMedCrossRefGoogle Scholar
  52. Rudd, C. E., Trevillyan, J. M., Dasgupta, J. D., Wong, L. L., and Schlossman, S. F., 1988, The CD4 receptor is complexed in detergent lysates to a protein-tyrosine kinase (pp58) from human T lymphocytes, Proc. Natl. Acad. Sci. USA 85: 5190–5194.PubMedCrossRefGoogle Scholar
  53. Ryu, S. H., Suh, P-G., Cho, K. S., Lee, K. Y., and Rhee, S. G., 1987, Bovine brain cytosol contains three immunologically distinct forms of inositol-phospholipid-specific phospholipase C, Proc. Natl. Acad. Sci. USA 84: 6649–6653.PubMedCrossRefGoogle Scholar
  54. Sadowski, I., Stone, J. C., and Pawson, T., 1986, A non-catalytic domain conserved among cytoplasmic protein—tyrosine kinases modifies the kinase function and transforming action of Fujinami sarcoma virus P130s°sfps, Mol. Cell. Biol. 6: 4396–4408.PubMedGoogle Scholar
  55. Sefton, B. M., Hunter, T., Ball, E. H., and Singer, S. J., 1981, Vinculin: A cytoskeletal target of the transforming protein of Rous sarcoma virus, Cell 24: 165–174.PubMedCrossRefGoogle Scholar
  56. Stahl, M. L., Ferenz, C. R., Kelleher, K. L., Kriz, R. W., and Knopf, J. L., 1988, Sequence similarity of phospholipase C with the non-catalytic region of src, Nature 332: 269–272.PubMedCrossRefGoogle Scholar
  57. Suh, P-G., Ryu, S. H., Choi, W. C., Lee, K-Y., and Rhee, S. G., 1988a, Monoclonal antibodies to three phospholipase C isozymes from bovine brain, J. Biol. Chem. 263: 14497–14504.PubMedGoogle Scholar
  58. Suh, P-G., Ryu, S. H., Moon, K. H., Suh, H. W., and Rhee, S. G., 1988b, Cloning and sequence of multiple forms of phospholipase C, Cell 54: 161–169.PubMedCrossRefGoogle Scholar
  59. Suh, P-G., Ryu, S. H., Moon, K. H., Suh, H. W., and Rhee, S. G., 1988c, Inositol phospholipidspecific phospholipase C: Complete cDNA and protein sequences and sequence homology to tyrosine kinase-related oncogene products, Proc. Natl. Acad. Sci. USA 85: 5419–5423.PubMedCrossRefGoogle Scholar
  60. Veillette, A., Bookman, M. A., Horak, E. M., and Bolen, J. R., 1988, The CD4 and CD8 T cell surface antigens are associated with the internal membrane tyrosine-protein kinase p56kk, Cell 55: 301–308.PubMedCrossRefGoogle Scholar
  61. Vogel, U. S., Dixon, R. A. F., Schaber, M. D., Diehl, R. E., Marshall, M. S., Scolnick, E. M., Sigal, I. S., and Gibbs, J. S., 1988, Cloning of bovine GAP and its interaction with oncogenic ras p21, Nature 335: 90–93.PubMedCrossRefGoogle Scholar
  62. Wahl, M. I., Daniel, T. O., and Carpenter, G., 1988, Antiphosphotyrosine recovery of phospholipase C activity after EGF treatment of A-431 cells, Science 241: 968–970.PubMedCrossRefGoogle Scholar
  63. Whitman, M., Downes, C. P., Keeler, M., Keller, T., and Cantley, L., 1988, Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate, Nature 332: 644–646.PubMedCrossRefGoogle Scholar
  64. Yamanashi, Y., Fukushige, S., Sukegawa, J., Miyajima, N., Matsubara, K., Yamamoto, T., and Toyoshima, K., 1987, The yes-related cellular gene lyn encodes a possible tyrosine kinase similar to p56kk, Mol. Cell. Biol. 7: 237–243.PubMedGoogle Scholar
  65. Yarden, Y., and Ullrich, A., 1988, Growth factor receptor tyrosine kinases, Annu. Rev. Biochem. 57: 443–478.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Tony Hunter
    • 1
  • Kathleen L. Gould
    • 1
  • Richard A. Lindberg
    • 1
    • 2
  • Jill Meisenhelder
    • 1
  • David S. Middlemas
    • 1
  • David P. Thompson
    • 1
    • 2
  1. 1.Molecular Biology and Virology LaboratoryThe Salk InstituteSan DiegoUSA
  2. 2.Department of BiologyUniversity of California at San DiegoLa JollaUSA

Personalised recommendations