Unfolding and Inactivation

Genetic and Chemical Approaches to the Stabilization of T4 Lysozyme and Human Interferon Gamma against Irreversible Thermal Denaturation
  • Ronald Wetzel
  • L. Jeanne Perry
  • Michael G. Mulkerrin
  • L. Michael Randall
Part of the New Horizons in Therapeutics book series (NHTH)

Abstract

One of the first criteria used for identifying and classifying proteins was the tendency of these “albuminoid” substances to respond to heating by coagulating in the manner of egg white albumin (see discussion in Fruton, 1972). By the early 1900s, thermally induced coagulation was being studied with purified proteins. By the 1930s, heat- and denaturant-induced coagulation was understood to involve two steps: a heat-dependent denaturation* step associated with an increase in solution viscosity and chemical accessibility of side-chain groups, and a heat-independent, but pH and salt-dependent, aggregation/precipitation step involving newly exposed groups (Wu, 1931; Mirsky and Pauling, 1936; Anson, 1938). A number of these coagulated proteins could be restored to the solubility and other properties of their native states by use of denaturing solvents followed by a return to native conditions (Neurath et al., 1944; Anson, 1945). The early observation of very high temperature coefficients for protein coagulation set this process apart from standard chemical reactions and was compared to the temperature dependence of state changes such as melting (Anson, 1938). Whereas the rates of chemical reactions might increase by a factor of two to three with a 10°C increase in temperature, the rate of coagulation was found to increase by factors of hundreds with a 10°C increase (Chick and Martin, 1912). The developing concepts of the nature of protein structure and stability in the first decades of this century depended greatly on such data.

Keywords

Disulfide Bond Thermal Inactivation Guanidine Hydrochloride Inactivation Rate Bovine Growth Hormone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abedel-Mequid, S. S., Shieh, H-S., Smith, w. W., Dayringer, H. E., Violand, B. N., and Bentle, L. A., 1987, Three dimensional structure of a genetically engineered variant of porcine growth hormone, Proc. Natl. Acad. Sci. USA 84: 6434–6437.CrossRefGoogle Scholar
  2. Ahern, T. J., and Klibanov, A. M., 1985, The mechanism of irreversible enzyme inactivation at 100°C, Science 228: 1280–1284.PubMedCrossRefGoogle Scholar
  3. Ahern, T. J., Casal, J. I., Petsko, G. A., and Klibanov, A. M., 1987, Control of oligomeric enzyme thermostability by protein engineering, Proc. Natl. Acad. Sci. USA 84: 675–679.PubMedCrossRefGoogle Scholar
  4. Alber, T., and Wozniak, J. A., 1985, A genetic screen for mutations that increase the thermal stability of phage T4 lysozyme, Proc. Natl. Acad. Sci. USA 82: 747–750.PubMedCrossRefGoogle Scholar
  5. Alber, T., Gruetter, M. G., Gray, T. M., Wozniak, J. A., Weaver, L. H., Chen, B-L., Baker, E. N., and Matthews, B. W., 1986, Structure and stability of mutant lysozymes from bacteriophage T4, in: Protein Structure, Folding and Design( D. L. Oxender, ed.), Alan R. Liss, New York pp. 307–318.Google Scholar
  6. Alber, T., Dao-pin, S., Nye, J. A., Muchmore, D. C., and Matthews, B. W., 1987, Temperature-sensitive mutations of bacteriophage T4 lysozyme occur at sites with low mobility and low solvent accessibility in the folded protein, Biochemistry 26: 3754–3758.PubMedCrossRefGoogle Scholar
  7. Anderson, W. D., Fink, A. L., Perry, L. J., and Wetzel, R., 1990, Effect of an engineered disulfide bond on the folding of T4 lysozyme at low temperatures, Biochem. 29: 3331–3337.CrossRefGoogle Scholar
  8. Anfinsen, C. B., and Scheraga, H. A., 1975, Experimental and theoretical aspects of protein folding, Adv. Prot. Chem. 29: 205–300.CrossRefGoogle Scholar
  9. Anson, M. L., 1938, The coagulation of proteins, in: The Chemistry of the Amino Acids and Proteins( C. L. A. Schmidt, ed.), Charles C Thomas, Springfield, IL pp. 407–428.Google Scholar
  10. Anson, M. L., 1945, Protein denaturation and the properties of protein groups, Adv. Prot. Chem. 2: 361–386.CrossRefGoogle Scholar
  11. Arakawa, T., Allton, N. K., and Hsu, Y-R., 1985, Preparation and characterization of recombinant DNA-derived human interferon-y, J. Biol.Chem. 260: 14435–14439.PubMedGoogle Scholar
  12. Becktel, W. J., and Baase, W. A., 1987, Thermal denaturation of bacteriophage T4 lysozyme at neutral pH, Biopolymers 26: 619–623.PubMedCrossRefGoogle Scholar
  13. Becktel, W. J., Baase, W. A., Chen, B. L., Muchmore, D. C., Schellman, C. G., and Schellman, J. A., 1986, The thermodynamics of protein denaturation—Single and multiple amino acid variants of bacteriophage-T4 lysozyme, Biophys. J. 49: 572a.CrossRefGoogle Scholar
  14. Benson, M. D., and Wallace, M. R., 1989, Amyloidosis, in: The Metabolic Basis of Inherited Disease(C. R. Scriver, A. L. Beaudet, W. S. Sly, and D. Valle, eds. ), pp. 2439–2460.Google Scholar
  15. Bewley, T. A., and Li, C. H., 1969, The reduction of protein disulfide bonds in the absence of denaturants, Int. J. Prot. Res. 1: 117–124.CrossRefGoogle Scholar
  16. Brandts, J. F., 1964, The thermodynamics of protein denaturation. I. The denaturation of chymotrypsinogen, J. Amer. Chem. Soc. 86: 4291–4301.CrossRefGoogle Scholar
  17. Brandts, J. F., 1969, Conformational transitions of proteins in water and in aqueous mixtures, in: Structure and Stability of Biological Macromolecules( S. Timasheff and G. Fasman, eds.), Marcel Dekker, New York pp. 213–290.Google Scholar
  18. Brash, J. L., and Horbett, T. A., eds., 1987, Proteins at Interfaces, American Chemical Society, Washington, DC.Google Scholar
  19. Brems, D. N., 1988, Solubility of different folding conformers of bovine growth hormone, Biochemistry 27: 4541–4546.CrossRefGoogle Scholar
  20. Brems, D. N., Plaisted, S. M., Dougherty, Jr., J. J., and Holzman, T. F., 1987, The kinetics of bovine growth hormone folding are consistent with a framework model, J. Biol. Chem. 262: 2590–2596.PubMedGoogle Scholar
  21. Brems, D. N., Plaisted, S. M., Havel, H. A., and Tomich, C.-S. C., 1988, Stabilization of an associated folding intermediate of bovine growth hormone by site-directed mutagenesis, Proc. Natl. Acad. Sci. USA 85: 3367–3371.PubMedCrossRefGoogle Scholar
  22. Casai, J. I., Ahern, T. J., Davenport, R. C., Petsko, G. A., and Klibanov, A. M., 1987, Subunit interface of triosephosphate isomerase: Site-directed mutagenesis and characterization of the altered enzyme, Biochemistry 26: 1258–1264.CrossRefGoogle Scholar
  23. Chen, B., and Schellman, J. A., 1989, Low-temperature unfolding of a mutant of phage T4 lysozyme. I. Equilibrium studies, Biochemistry 28: 685–691.PubMedCrossRefGoogle Scholar
  24. Chen, B., Baase, W. A., and Schellman, J. A., 1989, Low-temperature unfolding of a mutant of phage T4 lysozyme. II. Kinetic investigations, Biochemistry 28: 691–699.PubMedCrossRefGoogle Scholar
  25. Chick, H., and Martin, C. J., 1912, On the “heat coagulation” of proteins. Part IV. The conditions controlling the agglutination of proteins already acted on by hot water, J. Physiol. 45: 261–295.PubMedGoogle Scholar
  26. Creighton, T. E., 1978, Experimental studies of protein folding and unfolding, Prog. Biophys. Mol. Biol. 33: 231–297.PubMedCrossRefGoogle Scholar
  27. Daar, I. O., Artymiuk, P. J., Phillips, D. C., and Maquat, L. E., 1986, Human triose-phosphate isomerase deficiency: A single amino acid substitution results in a thermolabile enzyme, Proc. Natl. Acad. Sci. USA 83: 7903–7907.PubMedCrossRefGoogle Scholar
  28. DeGrado, W. F., Wasserman, Z. R., and Chowdhry, V., 1982, Sequence and structural homologies among type I and type II interferons, Nature 300: 379–381.PubMedCrossRefGoogle Scholar
  29. Desmadril, M., and Yon, J. M., 1984, Evidence for intermediates during unfolding and refolding of a two-domain protein, phage T4 lysozyme: Equilibrium and kinetic studies, Biochemistry 23: 1119.CrossRefGoogle Scholar
  30. Elwell, M., and Schellman, J., 1975, Phage T4 lysozyme; physical properties and reversible unfolding, Biochim. Biophys. Acta 386: 309–323.PubMedGoogle Scholar
  31. Elwell, M., and Schellman, J., 1977, Stability of phage T4 lysozymes: 1. Native properties and thermal stability of wild type and two mutant lysozymes, Biochim. Biophys. Acta 494: 367–383.PubMedGoogle Scholar
  32. Epstein, C. J., and Anfinsen, C. B., 1962, Reversible reduction of disulfide bonds in trypsin and ribonuclease coupled to carboxymethyl cellulose, J. Biol. Chem. 237: 2175–2179.PubMedGoogle Scholar
  33. Fish, W. W., Danielsson, A., Nordling, K., Miller, S. H., Lam, C. F., and Bjork, I., 1985, Denaturation behavior of antithrombin in guanidinium chloride. Irreversibility of unfolding caused by aggregation, Biochemistry 24: 1510–1517.PubMedCrossRefGoogle Scholar
  34. Fontana, A., Fassina, G., Vita, C., Dalzoppo, D., Zamai, M., and Zambonin, M., 1986, Correlation between sites of limited proteolsis and segmental mobility in thermolysin. Biochemistry 25: 1847–1851.PubMedCrossRefGoogle Scholar
  35. Freedman, M. H., and Sela, M., 1966, Recovery of antigenic activity upon reoxidation of completely reduced polyalanyl rabbit immunoglobulin G, J. Biol.Chem. 241: 2383–2396.PubMedGoogle Scholar
  36. Freedman, R. B., and Hillson, D. A., 1980, Formation of disulfide bonds, in: The Enzymology of Post-translational Modification of Proteins, Vol. 1 ( R. B. Freedman and H. C. Hawkins, eds.), Academic Press, Orlando, FL pp. 157–212.Google Scholar
  37. Frensdorff, H. K., Watson, M. T., and Kauzmann, W., 1953, The kinetics of protein denaturation. IV. The viscosity and gelation of urea solutions of ovalbumin, J. Am. Chem. Soc. 75: 5157–5166.CrossRefGoogle Scholar
  38. Fruton, J. S., 1972, Molecules and Life; Historical Essays on the Interplay of Chemistry and Biology, pp. 87–95, Wiley, New York.Google Scholar
  39. Georgiou, G., Telford, J. N., Shuler, M. L., and Wilson, D. B., 1986, Localization of inclusion bodies in Escherichia colioverproducing 3-lactamase or alkaline phosphatase, Appl. Environ. Microbiol. 52: 1157–1161.PubMedGoogle Scholar
  40. Ghelis, C., and Yon, J., 1982, Protein Folding, Academic Press, New York.Google Scholar
  41. Goldenberg, D. P., 1988, Genetic studies of protein stability and mechanisms of folding, Annu. Rev. Biophys. Biophys. Chem. 17: 481–507.PubMedCrossRefGoogle Scholar
  42. Goldenberg, D. P., and Creighton, T. E., 1984, Gel electrophoresis in studies of protein conformation and folding, Anal. Biochem. 138: 1–18.PubMedCrossRefGoogle Scholar
  43. Griko, Yu.V., Privalov, P. L., Sturtevant, J. M., and Venyaminov, S.Yu., 1988, Cold denaturation of staphylococcal nuclease, Proc. Natl. Acad. Sci. USA 85: 3343–3347.PubMedCrossRefGoogle Scholar
  44. Haase-Pettingell, C. A., and King, J., 1988, Formation of aggregates from a thermolabile in vivofolding intermediate in P22 tailspike maturation; a model for inclusion body formation, J. Biol. Chem. 263: 4977–4983.PubMedGoogle Scholar
  45. Haber, E., and Anfinsen, C. B., 1962, Side-chain interactions governing the pairing of half-cystine residues in ribonuclease, J. Biol. Chem. 237: 1839–1844.PubMedGoogle Scholar
  46. Hawkes, R., Gruetter, M. G., and Schellman, J., 1984, Thermodynamic stability and point mutations of bacteriophage T4 lysozyme, J. Mol. Biol. 175: 195–212.PubMedCrossRefGoogle Scholar
  47. Horbett, T. A., 1988, Molecular origins of the surface activity of proteins, Prot. Eng. 2: 172–174.CrossRefGoogle Scholar
  48. Horowitz, P., and Criscimagma, N. L., 1986, Low concentrations of guanidinium chloride expose apolar surfaces and cause differential perturbation in catalytic intermediates of rhodanese, J. Biol. Chem. 261: 15652–15658.PubMedGoogle Scholar
  49. Hsu, Y-R., and Arakawa, T., 1985, Structural studies on acid unfolding and refolding of recombinant human interferon-•, Biochemistry, 24: 7959–7963.PubMedCrossRefGoogle Scholar
  50. Huggins, C., Tapley, D. F., and Jensen, E. V., 1951, Sulthydryl-disulfide relationships in the induction of gels in proteins by urea, Nature 167: 592–593.PubMedCrossRefGoogle Scholar
  51. Ikai, A., Tanaka, S., and Noda, H., 1978, Reactivation kinetics of guanidine denatured bovine carbonic anhydrase B, Arch. Biochem. Biophys. 190: 39–45.PubMedCrossRefGoogle Scholar
  52. Imoto, T., Johnson, L. N., North, A. C. T., Phillips, D. C., and Rupley, J. A., 1972, Vertebrate lysozymes, in: The Proteins( P. D. Boyer, ed.), Academic Press, New York pp. 665–868.Google Scholar
  53. Kang, J., Lemaire, H-G., Unterbeck, A., Salbaum, J. M., Masters, C. L., Grzeschik, K-H., Multhaup, G., Beyreuther, K., and Mueller-Hill, B., 1987, The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor, Nature 325: 733–736.PubMedCrossRefGoogle Scholar
  54. Kato, A., and Yutani, K., 1988, Correlation of surface properties with conformational stabilities of wild-type and six mutant tryptophan synthase a-subunits substituted at the same position, Prot. Engl. 2: 153–156.CrossRefGoogle Scholar
  55. Kauzmann, W., 1959, Some factors in the interpretation of protein denaturation, Adv. Prot. Chem. 14: 1–63.CrossRefGoogle Scholar
  56. Kim, P. S., and Baldwin, R. L., 1982, Specific intermediates in the folding reactions of small proteins and the mechanism of protein folding, Annu. Rev. Biochem. 51: 459–489.PubMedCrossRefGoogle Scholar
  57. Kinsella, J. E., 1982, Relationships between structure and functional properties of food proteins, in: Food Proteins( P. F. Fox and J. J. Condon, eds.), Applied Science Pubs., London pp. 51–103.Google Scholar
  58. Kishi, H., Mukai, T., Hirano, A., Fujii, H., Miwa, S., and Hori, K., 1987, Human aldolase A deficiency associated with a hemolytic anemia: Thermolabile aldolase due to a single base mutation, Proc. Natl. Acad. Sci. USA 84: 8623–8627.PubMedCrossRefGoogle Scholar
  59. Kossiakoff, A. A., 1988, Tertiary structure is a principal determinant to protein deamidiation, Science 240: 191–194.PubMedCrossRefGoogle Scholar
  60. London, J., Skrzynia, C., and Goldberg, M. E., 1974, Renaturation of Escherichia colitryptophanase after exposure to 8 M urea, Eur. J. Biochem. 47: 409–415.PubMedCrossRefGoogle Scholar
  61. Lumry, R., and Biltonen, R., 1969, Thermodynamic and kinetic aspects of protein conformations in relation to physiological function, in: Structure and Stability of Biological Macromolecules( S. Timasheff and G. Fasman, eds.), pp. 65–212, Marcel Dekker, New York.Google Scholar
  62. Lumry, R., and Eyring, H., 1954, Conformation changes of proteins, J. Phys. Chem. 58: 110–120.CrossRefGoogle Scholar
  63. Marston, F. A. O., 1986, The purification of eukaryotic polypeptides synthesized in Escherichia coli, Biochem. J. 240: 1–12.PubMedGoogle Scholar
  64. Masters, C. L., Simms, G., Weinman, N. A., Multhaup, G., McDonald, B. L., and Beyreuther, K., 1985, Amyloid plaque core protein in Alzheimer disease and Down’s syndrome, Proc. Natl. Acad. Sci. USA 82: 4245–4249.PubMedCrossRefGoogle Scholar
  65. Matsumura, M., Yasumura, S., and Aiba, S., 1986, Cumulative effect of intragenic amino-acid replacements on the thermostability of a protein, Nature 323: 356–358.PubMedCrossRefGoogle Scholar
  66. Matsumura, M., Becktel, W. J., and Matthews, B. W.,1988, Hydrophobic stabilization in T4 lysozyme determined directly by multiple substitutions of Ile 3, Nature 334:406–410.PubMedCrossRefGoogle Scholar
  67. Matthews, B. W., Nicholson, H., and Becktel, W. J., 1987, Enhanced protein thermostability from site-directed mutations that decrease the entropy of unfolding, Proc. Natl. Acad. Sci. USA 84: 6663–6667.PubMedCrossRefGoogle Scholar
  68. Matthews, C. R., Erickson, P. M., Van Vliet, D. L., and Petersheim, M., 1978, Synthesis of pentaammineruthenium-histidine complexes in ribonuclease-A, J. Am. Chem. Soc. 100: 2260–2262.CrossRefGoogle Scholar
  69. McKenzie, H. A., Ralston, G. B., and Shaw, D. C., 1972, Location of sulfhydryl and disulfide groups in bovine ß-lactoglobulins and effects of urea, Biochemistry 11: 4539–4547.PubMedCrossRefGoogle Scholar
  70. Mirsky, A. E., and Pauling, L., 1936, On the structure of native, denatured, and coagulated proteins, Proc. Natl. Acad. Sci. USA 22: 439–447.PubMedCrossRefGoogle Scholar
  71. Mitchinson, C., and Wells, J. A., 1989, Protein engineering of disulfide bonds in subtilisin BPN’ Biochemistry 28: 4807–4815.PubMedCrossRefGoogle Scholar
  72. Mitraki, A., Betton, J-M., Desmadril, M., and Yon, J. M., 1987, Quasi-irreversibility in the unfolding-refolding transition of phosphoglycerate kinase induced by guanidine hydrochloride, Eur. J. Biochem. 163: 29–34.PubMedCrossRefGoogle Scholar
  73. Morehead, H., Johnson, P. D., and Wetzel, R., 1984, Roles of the 29–138 disulfide bond of subtype A of human a-interferon in its antiviral activity and conformational stability, Biochemistry 23: 2500–2507.PubMedCrossRefGoogle Scholar
  74. Mulkerrin, M. G., and Wetzel, R., 1989, The pH dependence of the reversible and irreversible thermal denaturation of gamma interferon Biochemistry 28: 6556–6561.PubMedCrossRefGoogle Scholar
  75. Mulkerrin, M. G., Perry, L. J., and Wetzel, R., 1986, Stability and solution structure of a disulfide cross-linked T4 lysozyme, in: Protein Structure, Folding and Design( D. L. Oxender, ed.), Alan R. Liss, New York pp. 297–305.Google Scholar
  76. Neurath, H., Greenstein, J. P., Putnam, F. W., and Erickson, J. O., 1944, The chemistry of protein denaturation, Chem. Rev. 34: 157–265.CrossRefGoogle Scholar
  77. Nojima, H., Ikai, A., Oshima, T., and Noda, H., 1977, Reversible thermal unfolding of thermostable phosphoglycerate kinase. Thermostability associated with mean zero enthalpy change, J. Mol. Biol. 116: 429–442.PubMedCrossRefGoogle Scholar
  78. Oesch, B., Westaway, D., Walchli, M., McKinldey, M. P., Kent, S. B. H., Aebersold, R., Barry, R. A., Tempst, P., Teplow, D. B., Hood, L. E., Prusiner, S. B., and Weissman, C., 1985, A cellular gene encodes scrapie PrP 27–30 protein, Cell 40: 735–746.PubMedCrossRefGoogle Scholar
  79. Orsini, G., Skrzynia, C., and Goldberg, M. E., 1975, The renaturation of reduced polyalanylchymotrypsinogen and chymotrypsinogen, Eur. J. Biochem. 59: 433–440.PubMedCrossRefGoogle Scholar
  80. Pace, N. C., and Tanford, C., 1968, Thermodynamics of the unfolding of ß-lactoglobulin A in aqueous urea solutions between 5 and 55°, Biochemistry 7: 198–208.PubMedCrossRefGoogle Scholar
  81. Pantoliano, M. W., Ladner, R. C., Bryan, P. N., Rollence, M. L., Wood, J. F., and Poulos, T. L., 1987, Protein engineering of subtilisin BPN’: Enhanced stabilization through the introduction of two cysteines to form a disulfide bond, Biochemistry 26: 2077–2082.PubMedCrossRefGoogle Scholar
  82. Perry, L. J., and Wetzel, R., 1984. Disulfide bond engineered into T4 lysozyme: Stabilization of the protein toward thermal inactivation, Science 226: 555–557.PubMedCrossRefGoogle Scholar
  83. Perry, L. J., and Wetzel, R., 1986, Unpaired cysteine-54 interferes with the ability of an engineered disulfide to stabilize T4 lysozyme, Biochemistry 25: 733–739.PubMedCrossRefGoogle Scholar
  84. Perry, L. J., and Wetzel, R., 1987, The role of cysteine oxidation in the thermal inactivation of T4 lysozyme, Protein Engineering 1: 101–105.PubMedCrossRefGoogle Scholar
  85. Plunkett, G., and Ryan, C. A., 1980, Reduction and carboxamidomethylation of the single disulfide bond of proteinase inhibitor I from potato tubers, J. Biol Chem. 255: 2752–2755.PubMedGoogle Scholar
  86. Privalov, P. L., 1982, Stability of proteins: Proteins which do not present a single cooperative system, Adv. Prot. Chem. 35: 1–104.CrossRefGoogle Scholar
  87. Privalov, P. L., Griko, Yu.V., Venyaminov, S.Yu., and Kutyshenko, V. P., 1986, Cold denaturation of myoglobin, J. Mol. Biol. 190: 487–498.PubMedCrossRefGoogle Scholar
  88. Prouty, W. F., Karnovsky, M. J., and Goldberg, A. L., 1975, Degradation of abnormal proteins in Escherichia coli, J. Biol. Chem. 250: 1112–1122.PubMedGoogle Scholar
  89. Remington, S. J., Anderson, W. F., Owen, J., Ten Eyck, L. F., Grainger, C. T., and Matthews, B. W., 1978, Structure of the lysozyme from bacteriophage T4: An electron density map at 2.4 A resolution, J. Mol. Biol. 118: 81–98.PubMedCrossRefGoogle Scholar
  90. Rinderknecht, E., O’Connor, B. H., and Rodriquez, H., 1984, Natural human interferon-•: Complete amino acid sequence and determination of sites of glycosylation, J. Biol. Chem. 259: 6790–6797.PubMedGoogle Scholar
  91. Robakis, N. K., Sawh, P. R., Wolfe, G. C., Rubenstein, R., Carp, R. I., and Innis, M. A., 1986, Isolation of a cDNA clone encoding the leader peptide of prion protein and expression of the homologous gene in various tissues, Proc. Natl. Acad. Sci. USA 83: 6377–6381.PubMedCrossRefGoogle Scholar
  92. Roder, H., Elove, G. A., and Englander, S. W., 1988, Structural characterization of folding intermediates in cytochrome c by H-exchange labelling and proton NMR, Nature 335: 700–704.PubMedCrossRefGoogle Scholar
  93. Rudolph, R., Zettlmeissl, G., and Jaenicke, R., 1979, Reconstitution of lactic dehydrogenase. Noncovalent aggregation vs. reactivation. 2. Reactivation of irreversibly denatured aggregates, Biochemistry 18: 5572–5575.PubMedCrossRefGoogle Scholar
  94. Sanchez-Ruiz, J. M., Lopez-Lacomba, J. L., Cortijo, M., and Mateo, P. L., 1988a, Differential scanning calorimetry of the irreversible thermal denaturation of thermolysin, Biochemistry 27: 1648–1652.CrossRefGoogle Scholar
  95. Schellman, C. G., 1986, Proteolysis as a probe for motility in mutant bacteriophage T4 lysozymes, Biophys. J. 49: 493a.CrossRefGoogle Scholar
  96. Schellman, J. A., Lindorfer, M., Hawkes, R., and Gruetter, M., 1981, Mutations and protein stability, Biopolymers 20: 1989–1999.PubMedCrossRefGoogle Scholar
  97. Seiki, R. K., and Gelfand, D. H., 1988, Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase, Science 239: 487–494.CrossRefGoogle Scholar
  98. Shugar, D., and Syruczek, E., 1954, Kinetics of heat inactivation of lysozyme and the influence of various buffers and manganese ions, Bull. Acad. Polon. Sci. Cl. II 2: 73–78.Google Scholar
  99. Streisinger, G., Muhai, F., Dreyer, W., Miller, B., and Horiuchi, S., 1961, Mutations affecting lysozyme of phage T4, Cold Spring Harbor Symp. Quant. Biol. 26: 25–30.PubMedCrossRefGoogle Scholar
  100. Stroupe, S. D., and Foster, J. F., 1973, Further studies of the sulthydryl-catalyzed isomerization of bovine mercaptoalbumin, Biochemistry 12: 3824–3830.PubMedCrossRefGoogle Scholar
  101. Tanford, C., 1968, Protein denaturation, Adv. Prot. Chem. 23: 121–282.CrossRefGoogle Scholar
  102. Taylor, G., Hoare, M., Gray, D. R., and Marston, F. A. O., 1986, Size and density of protein inclusion bodies, Biotechnology 4: 553–557.CrossRefGoogle Scholar
  103. Tomazic, S. J., and Klibanov, A. M., 1988, Why is one Bacillusa-amylase more resistant against irreversible thermoinactivation than another? J. Biol. Chem. 263: 3092–3096.PubMedGoogle Scholar
  104. Torchinsky, Yu.M., 1981, Sulfur in Proteins, p. 55, Pergamon Press, Oxford.Google Scholar
  105. Tsugita, A., Inouye, M., Terzaghi, E., and Streisinger, G., 1968, Purification of T4 lysozyme, J. Biol. Chem. 243: 391–397.PubMedGoogle Scholar
  106. Udgaonkar, J. B., and Baldwin, R. L., 1988, NMR evidence for an early framework intermediate on the folding pathway of ribonuclease A, Nature 335: 694–699.PubMedCrossRefGoogle Scholar
  107. Volkin, D. B., and Klibanov, A. M., 1987, Thermal destruction processes in proteins involving cystine residues, J. Biol. Chem. 262: 2945–2950.PubMedGoogle Scholar
  108. Vulliamy, T. J., D’Urso, M., Battistuzzi, G., Estrada, M., Foulkes, N. S., Martini, G., Calabro, V., Poggi, V., Giordano, R., Town, M., Luzzatta, L., and Persico, M. G., 1988, Diverse point mutations in the human glucose-6-phosphate dehydrogenase gene cause enzyme deficiency and mild or severe hemolytic anemia, Proc. Natl. Acad. Sci. USA 85: 5171–5175.PubMedCrossRefGoogle Scholar
  109. Warner, R. C., and Levy, M., 1958, Denaturation of bovine plasma albumin. II. Isolation of intermediates and mechanism of the reaction at pH 7, J. Am. Chem. Soc. 80: 5735–5744.CrossRefGoogle Scholar
  110. Wells, J. A., and Powers, D. B., 1986, In vivoformation and stability of engineered disulfide bonds in subtilisin, J. Biol. Chem. 261: 6564–6570.Google Scholar
  111. Wetzel, R., 1986, Investigation of the structural role of disulfides by protein engineering: A study with T4 lysozyme, in; Protein Engineering: Applications in Science, Medicine and Industry(Inouye, M., and Sarma, R., eds.), Academic Press, New York pp. 257–274.Google Scholar
  112. Wetzel, R., 1987, Gordian knot loosened somewhat, Prot. Engin. 1: 79–80.CrossRefGoogle Scholar
  113. Wetzel, R., 1988, Harnessing disulfide bonds using protein engineering, Trends Biochem. Sci. 12: 478–482.CrossRefGoogle Scholar
  114. Wetzel, R., and Goeddel, D. V., 1983, Synthesis of polypeptides by recombinant DNA means, in: The Peptides: Analysis, Synthesis, Biology, Vol. 5 ( E. Gross and J. Meienhofer, eds.), Academic Press, New York pp. 1–64.Google Scholar
  115. Wetzel, R., Perry, L. J., Baase, W. A., and Becktel, W. J., 1988, Disulfide bonds and thermal stability in T4 lysozyme, Proc. Natl. Acad. Sci. USA 85: 401–405.PubMedCrossRefGoogle Scholar
  116. Wetzel, R., Perry, L. J., Veilleux, C.. and Chang, G., 1990, Mutational analysis of the carboxyl terminus of human interferon-y, Protein Engineering3: (in press).Google Scholar
  117. White, F. H., Jr., 1982, Studies on the relationship of disulfide bonds to the formation and maintenance of secondary structure in chicken egg white lysozyme, Biochemistry 21: 967–977.PubMedCrossRefGoogle Scholar
  118. Wu, H., 1931, Studies on denaturation of proteins XIII. A theory of denaturation, Chin. J. Physiol. 5: 321–344.Google Scholar
  119. Yano, Y., and Irie, M., 1975, Renaturation of yeast inorganic pyrophosphatase denatured in urea and guanidine hydrochloride, J. Biochem. 78: 1001–1011.PubMedGoogle Scholar
  120. Yocum, K. M., Shelton, J. B., Shelton, J. R., Schroeder, W. A., Worosila, G., Isied, S. S., Bordignon, E., and Gray, H. B., 1982, Preparation and characterization of a pentaamineruthenium III derivative of horse heart ferricytochrome c, Proc. Natl. Acad. Sci. USA 79: 7052–7055.CrossRefGoogle Scholar
  121. Yphantis, D. A., and Arakawa, T., 1987, Sedimentation equilibrium measurements of recombinant DNA derived human interferon -y, Biochemistry 26: 5422–5427.PubMedCrossRefGoogle Scholar
  122. Zale, S. E., and Klibanov, A. M., 1983, On the role of reversible denaturation (unfolding) in the irreversible thermal inactivation of enzymes, Biotech. Bioeng. 25: 2221–2230.CrossRefGoogle Scholar
  123. Zale, S. E., and Klibanov, A. M., 1986, Why does ribonuclease irreversibly inactivate at high temperatures? Biochemistry 25: 5432–5444.PubMedCrossRefGoogle Scholar
  124. Zetina, C. R., and Goldberg, M. E., 1980, A comparative study of the thermal inactivation of the isolated and associated domains within the 02 subunit of Escherichia colitryptophan synthetase, J. Biol. Chem. 255: 4381–4385.PubMedGoogle Scholar
  125. Zettlmeissl, G., Rudolph, R., and Jaenicke, R., 1979, Reconstitution of lactic dehydrogenase. Noncovalent aggregation vs. reactivation. 1. Physical properties and kinetics of aggregation, Biochemistry 18: 5567–5571.PubMedCrossRefGoogle Scholar
  126. Zoon, K. C., and Wetzel, R., 1984, Comparative structures of mammalian interferons, in: Handbook of Experimental Pharmacology, Vol. 71 ( P. E. Came and W. A. Carter, eds.), pp. 79–100, Springer, Berlin.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Ronald Wetzel
    • 1
  • L. Jeanne Perry
    • 1
  • Michael G. Mulkerrin
    • 1
  • L. Michael Randall
    • 1
  1. 1.Biomolecular Chemistry DepartmentGenentech, Inc.South San FranciscoUSA

Personalised recommendations