Protein Folding and Stability

  • Robert L. Baldwin
Part of the New Horizons in Therapeutics book series (NHTH)


This section includes chapters on the process of protein folding and on factors that affect protein stability. The practical benefits of these studies are obvious, both for obtaining improved yields of proteins produced in expression systems and for improving the working properties of commercial enzymes. The basic motivation, however, for most scientists studying protein folding and stability is to help elucidate the mechanisms used to translate the linear amino acid sequence of a polypeptide into the three-dimensional structure of a protein. By studying the folding process, scientists set out to trap folding intermediates in order to determine their structures and find out what interactions stabilize these structures. By analyzing individual factors that affect stability, they can develop general methods for increasing protein stability, based on site-directed mutagenesis, and find out how individual interactions work together to determine the three-dimensional structure of a protein.


Nuclear Magnetic Resonance Salt Bridge Folding Process Helix Formation Folding Intermediate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bermejo, F. J., Rico, M., Santoro, J., Herranz, J. Gallego, E., and Nieto, J. L., 1986, Quantum-chemical calculations of a proposed Phe, Hisr+4 stabilizing interaction in peptide et-helices, J. Mol. Structure 142: 339–342.CrossRefGoogle Scholar
  2. Bierzynski, A., Kim, P. S., and Baldwin, R. L., 1982, A salt bridge stabilizes the helix formed by isolated C-peptide of RNase A, Proc. Natl. Acad. Sci. USA 79: 2470–2474.PubMedCrossRefGoogle Scholar
  3. Biringer, R. G., and Fink, A. L., 1982, Observation of intermediates in the folding of ribonuclease A at low temperature using proton nuclear magnetic resonance, Biochemistry 21: 4748–4755.PubMedCrossRefGoogle Scholar
  4. Blundell, T., Singh, J., Thornton, J., Burley, S. K., and Petsko, G. A., 1986, Aromatic interactions, Science 234: 1005.CrossRefGoogle Scholar
  5. Brown, J. E., and Klee, W. A., 1971, Helix-coil transition of the isolated amino terminus of ribonuclease, Biochemistry 10: 470–476.PubMedCrossRefGoogle Scholar
  6. Craig, S., Hollecker, M., Creighton, T. E., and Pain, R. H., 1985, Single amino acid mutations block a late step in the folding of 13-lactamase from Staphylococcus aureus, J. Mol. Biol. 185: 681–687.PubMedCrossRefGoogle Scholar
  7. Creighton, T. E., 1974, Intermediates in the refolding of reduced pancreatic trypsin inhibitor, J. Mol. Biol. 87: 579–602.PubMedCrossRefGoogle Scholar
  8. Creighton, T. E., 1977, Energetics of folding and unfolding of pancreatic trypsin inhibitor, J. Mol. Biol. 113: 295–312.PubMedCrossRefGoogle Scholar
  9. Englander, S. W., and Kallenbach, N. R., 1984, Hydrogen exchange and structural dynamics of proteins and nucleic acids, Q. Rev. Biophys. 4: 521–655.Google Scholar
  10. Epand, R. M., and Scheraga, H. A., 1968, The influence of long-range interactions on the structure of myoglobin, Biochemistry 7: 2864–2872.PubMedCrossRefGoogle Scholar
  11. Fairman, R., Shoemaker, K. R., York, E. J., Stewart, J. M., and Baldwin, R. L., 1988, Further studies of the helix dipole model: effects of a free a-NH3+ or a-COO-group on helix, Proteins: Structure, Function, Genetics 5: 1–7.Google Scholar
  12. Fersht, A. R., Shi, J.-P., Knill-Jones, J., Lowe, D. M., Wilkinson, A. J., Blow, D. M., Brick, P., Carter, P., Waye, M. M. Y., and Winter, G., 1985, Hydrogen bonding and biological specificity analyzed by protein engineering, Nature 314: 235–238.PubMedCrossRefGoogle Scholar
  13. Griko, Y. V., Privalov, P. L., Venjaminov, S. Y., and Kutyshenko, V. P., 1988. Thermodynamic study of the apomyoglobin structure, J. Mol. Biol. 202: 127–138.PubMedCrossRefGoogle Scholar
  14. Hermans, J., Jr., 1966, Experimental free energy and enthalpy of formation of the a-helix, J. Phys. Chem. 70: 510–515.PubMedCrossRefGoogle Scholar
  15. Hodges, R. S., Semchuk, P. D., Taneja, A. K., Kay, C. M., Parker, J. M. R., and Mant, C. T., 1988, Protein design using model synthetic peptides, Peptide Res. 1: 19–30.Google Scholar
  16. Ikeguchi, M., Kuwajima, K., Mitani, M., and Sugai, S., 1986, Evidence for identity between the equilibrium unfolding intermediate and a transient folding intermediate: A comparative study of the folding reactions of a-lactalbumin and lysozyme, Biochemistry 25: 6965–6972.PubMedCrossRefGoogle Scholar
  17. Kauzmann, W., 1959, Factors in interpretation of protein denaturation, Adv. Protein Chem. 14: 163.Google Scholar
  18. Klotz, I. M., and Franzen, J. S., 1960, The stability of interpeptide hydrogen bonds in aqueous solution, J. Am. Chem. Soc. 82: 5241.CrossRefGoogle Scholar
  19. Kuwajima, K., Nitta, K., Yoneyama, M., and Sugai, S., 1976, Three-state denaturation of alactalbumin by guanidine hydrochloride, J. Mol. Biol. 106: 359–373.PubMedCrossRefGoogle Scholar
  20. Marqusee, S., and Baldwin, R. L., 1987, Helix stabilization by Gin—…Lys+ salt bridges in short peptides of de novo design, Proc. Natl. Acad. Sci. USA 84: 8898–8902.PubMedCrossRefGoogle Scholar
  21. Mitchinson, C., and Baldwin, R. L., 1986, The design and production of semisynthetic ribonucleases with increased thermostability by incorporation of analogues with enhanced helical stability, Proteins: Structure, Function, Genetics 1: 23–33.Google Scholar
  22. Mutter, M., 1988, Nature’s rules and chemist’s tools: A way for creating novel proteins, Trends Biochem. Sci. 13: 260–265.PubMedCrossRefGoogle Scholar
  23. Nozaki, Y., and Tanford, C., 1971, The solubility of amino acids and two glycine peptides in aqueous ethanol and dioxane solutions. Establishment of a hydrophobicity scale, J. Biol. Chem. 246: 2211–2217.PubMedGoogle Scholar
  24. Oas, T. G., and Kim, P. S., 1988, A peptide folding intermediate, Nature 336: 42–48.PubMedCrossRefGoogle Scholar
  25. Ohgushi, M., and Wada, A., 1983, “Molten-globule state”: A compact form of globular proteins with mobile side-chains, FEBS Leu. 164:21–24.Google Scholar
  26. Ptitsyn, O. B., 1987, Protein folding: hypotheses and experiments, J. Protein Chem. 6: 273–293.CrossRefGoogle Scholar
  27. Rico, M., Santoro, J., Bermejo, E. J., Herranz, J., Nieto, J. L., Gallego, E., and Jiménez, M. A., 1986, Thermodynamic parameters for the helix-coil thermal transition of ribonuclease S-peptide and derivatives from ‘H-NMR data, Biopolymers 25: 1031–1053.PubMedCrossRefGoogle Scholar
  28. Robson, B., and Pain, R. H., 1976, The mechanism of folding of globular proteins. Equilibria and kinetics of conformational transitions of penicillinase from Staphylococcus aureus involving a state of intermediate conformation, Biochem. J. 155: 331–344.PubMedGoogle Scholar
  29. Roder, H., Elöve, G. A., and Englander, S. W., 1988, Structural characterization of folding intermediates in cytochrome c by H-exchange labelling and proton NMR, Nature 335: 700–704.PubMedCrossRefGoogle Scholar
  30. Schellman, J. A., 1955, The thermodynamics of urea solutions and the heat of formation of the peptide hydrogen bond, Compt. Rend. Tray. Lab. Carlsberg Sér. Chim. 29: 223–229.Google Scholar
  31. Shoemaker, K. R., Kim, P. S., Brems, D. N., Marqusee, S., York, E. J., Chaiken, I. M., Stewart, J. M., and Baldwin, R. L., 1985, Nature of the charged-group effect on the stability of the C-peptide helix, Proc. Natl. Acad. Sci. USA 82: 2349–2353.PubMedCrossRefGoogle Scholar
  32. Shoemaker, K. R., Fairman, R., Kim, P. S., York, E. J., Stewart, J. M., and Baldwin, R. L., 1987a, The C-peptide helix considered as an autonomous folding unit, Cold Spring Harbor Symp. Quant. Biol. 12:391–398.Google Scholar
  33. Shoemaker, K. R., Kim, P. S., York, E. J., Stewart, J. M., and Baldwin, R. L., 1987b, Tests of the helix dipole model for stabilization of a-helices, Nature 326: 563–567.PubMedCrossRefGoogle Scholar
  34. States, D. J., Creighton, T. E., Dobson, C. M., and Karplus, M., 1987, Conformations of intermedi-ates in the folding of the pancreatic trypsin inhibitor, J. Mol. Biol. 195: 731–739.PubMedCrossRefGoogle Scholar
  35. Stellner, K. L., Tùcker, E. E., and Christian, S. D., 1983, Thermodynamic properties of the benzene-phenol dimer in dilute aqueous solution, J. Sol. Chem. 12: 307–313.CrossRefGoogle Scholar
  36. Sueki, M., Lee, S., Powers, S. P., Denton, J. B., Konishi, Y., and Scheraga, H. A., 1984, Helix-coil stability constants for the naturally occurring amino acids in H20.22. Histidine parameters from random poly (hydroxybutyl) glutamine co-L-histidine, Marcomolecules 17: 148–155.CrossRefGoogle Scholar
  37. Susi, H., Timasheff, S. N., and Ard, J. S., 1964, Near infrared investigation of interamide hydrogen bonding in aqueous solution, J. Biol. Chem. 239: 3051–3054.PubMedGoogle Scholar
  38. Tanford, C., 1962, Contribution of hydrophobic interactions to the stability of the globular conformation of proteins, J. Am. Chem. Soc. 84: 4240–4247.CrossRefGoogle Scholar
  39. Taniuchi, H., and Anfinsen, C. B., 1969, An experimental approach to the study of the folding of staphylococcal nuclease, J. Biol. Chem. 244: 3864–3875.PubMedGoogle Scholar
  40. Udgaonkar, J. B., and Baldwin, R. L., 1988, NMR evidence for an early framework intermediate on the folding pathway of ribonuclease A, Nature 335: 694–699.PubMedCrossRefGoogle Scholar
  41. Wagner, G., 1983, Characterization of the distribution of internal motions in the basic pancreatic trypsin inhibitor using a large number of internal NMR probes, Q. Rev. Biophys. 16: 1–57.PubMedCrossRefGoogle Scholar
  42. Wlodawer, A., and Sjölin, L., 1983, Structure of ribonuclease A: results of joint neutron and X-ray refinement at 2.0 A° resolution, Biochemistry 22: 2720–2728.PubMedCrossRefGoogle Scholar
  43. Wong, K-P. and Tanford, C., 1973, Denaturation of bovine carbonic anhydrase B by guanidine hydrochloride, J. Biol. Chem. 248: 8518–8523.PubMedGoogle Scholar
  44. Wood, R. H., and Thompson, P. T., 1990, Differences between pair and bulk hydrophobic interactions, Proc. Natl. Acad. Sci. USA 87: 946–949.PubMedCrossRefGoogle Scholar
  45. Zimm, B. H., and Bragg, J. K., 1959, Theory of the phase transition between helix and random coil in polypeptide chains, J. Chem. Phys. 31: 526–535.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Robert L. Baldwin
    • 1
  1. 1.Department of Biochemistry, Beckman CenterStanford University Medical CenterStanfordUSA

Personalised recommendations