Advertisement

Recognition at Membrane Surfaces Influenza HA and Human HLA

  • Don C. Wiley
Part of the New Horizons in Therapeutics book series (NHTH)

Abstract

The influenza virus hemagglutinin (HA) and the human histocompatibility antigens HLA-A2 and HLA-A28 are membrane glycoproteins whose three-dimensional structures have been determined by X-ray diffraction as part of an effort to understand their mechanisms of action.

Keywords

Influenza Virus Sialic Acid Membrane Fusion Fusion Peptide Histocompatibility Antigen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ajitkumar, P., Geier, S. S., Kesari, K. V., Borriello, F., Nakagawa, M., Bluestone, J. A., Saper, M. A., Wiley, D. C., and Nathenson, S. G., 1988, Evidence that multiple residues on both the a-helices of the class I MHC molecule are simultaneously recognized by the T cell receptor, Cell 54: 47–56.PubMedCrossRefGoogle Scholar
  2. Allen, P. M., Matsueda, G. R., Evans, R. J., Dunbar, J. B., Jr., Marshall, G. R., and Unanue, E. R., 1987, Identification of the T-cell and la contact residues of a T-cell antigenic epitope, Nature 327: 713–715.PubMedCrossRefGoogle Scholar
  3. Amit, A. G., Mariuzza, R. A., Phillips, S. E. V., and Poljak, R. J., 1986, Three-dimensional structure of an antigen-antibody complex at 2.8 A resolution, Science 233: 747–753.PubMedCrossRefGoogle Scholar
  4. Bach, F. H., and van Rood, J. J., 1976, The major histocompatibility complex—Genetics and biology, N. Engl. J. Med. 295: 806–813.PubMedCrossRefGoogle Scholar
  5. Beddell, C. R., Goodford, P. J., Kneen, G., White, R. D., Wilkinson, S., and Wootton, R., 1984, Substituted benzaldehydes designed to increase the oxygen affinity of human haemoglobin and inhibit the sickling of sickle erythrocytes, Br. J. Pharm. 82: 397–407.Google Scholar
  6. Bergelson, L. D., Bukrinskaya, A. G. Prokazova, N. V., Shaposhnikova, G. I., Kocharov, S. L., Shevchenko, V. P., Kornilaeva, G. V., and Fomina-Ageeva, E. V., 1982, Role of gangliosides in reception of influenza virus, Eur. J. Biochem. 128: 467–474.Google Scholar
  7. Berkower, I., Buckenmeyer, G. K., and Berzofsky, J. A., 1986, Molecular mapping of a histocompatibility-restricted immunodominant T cell epitope with synthetic and natural peptides: Implications for T cell antigenic structure, J. Immun. 136: 2498–2503.PubMedGoogle Scholar
  8. Biddison, W. E., Ward, F. E., Shearer, G. M., and Shaw, S., 1980, The self determinants recognized by human virus-immune T cells can be distinguished from the serologically defined HLA antigens, J. Immun. 124: 548–552.PubMedGoogle Scholar
  9. Bjorkman, P. J., Strominger, J. L., and Wiley, D. C., 1986, Crystallization and X-ray diffraction studies on the histocompatibility antigens HLA-A2 and HLA-A28 from human cell membranes, J. Mol. Biol. 186: 205–210.CrossRefGoogle Scholar
  10. Bjorkman, P. J., Saper, M. A., Samraoui, B., Bennett, W. S., Strominger, J. E., and Wiley, D. C., 1987a, Structure of the human class I histocompatibility antigen, HLA-A2, Nature 329: 506–512.PubMedCrossRefGoogle Scholar
  11. Bjorkman, P. J., Saper, M. A., Samraoui, B., Bennett, W. S., Strominger, J. E., and Wiley, D. C., 1987b, The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens, Nature 329: 512–518.PubMedCrossRefGoogle Scholar
  12. Brand, C. M., and Skehel, J. J., 1972, Crystalline antigen from the influenza virus envelope, Nature 238: 145–147.CrossRefGoogle Scholar
  13. Bricogne, G., 1976, Methods and programs for direct-space exploitation of geometric redundancies, Acta Crystallogr. A32: 832–847.Google Scholar
  14. Brown, J. H., Jardetzky, T., Saper, M. A., Samraoui, B., Bjorkman, P. J., and Wiley, D. C., 1988, A hypothetical model of the foreign antigen binding site of class II histocompatibility molecules, Nature 332: 845–850.PubMedCrossRefGoogle Scholar
  15. Colman, P. M., 1988, Structure of antibody-antigen complexes: Implications for immune recognition, Adv. Immunl. 43: 99–132.Google Scholar
  16. Colman, P. M., Varghese, J. N., and Laver, W. G., 1983, Structure of the influenza virus glycoprotein antigen neuraminidase at 29 A resolution, Nature 303: 41–47.PubMedCrossRefGoogle Scholar
  17. Colman, P. M., Laver, W. G., Varghese, J. N., Baker, A. T., Tirlloch, P. A., Air, G. M., and Webster, R. G., 1987, Three-dimensional structure of a complex of antibody with influenza virus neuraminidase, Nature 326: 358–363.PubMedCrossRefGoogle Scholar
  18. Cresswell, P., ‘Rimer, M. J., and Strominger, J. L., 1973, Papain-solubilized HL-A antigens from cultured human lymphocytes contain two peptide fragments, Proc. Natl. Acad. Sci. USA 70: 1603–1607.PubMedCrossRefGoogle Scholar
  19. Daniels, R. S., Douglas, A. R., Skehel, J. J., and Wiley, D. C., 1983, Analyses of the antigenicity of influenza haemagglutinin at the pH optimum for virus-mediated membrane fusion, J. Gen. Virol. 64: 1657–62.PubMedCrossRefGoogle Scholar
  20. Daniels, R. S., Downie, J. C., Hay, A. J., Knossow, M., Skehel, J. J., Wang, M. L., and Wiley, D. C., 1985, Fusion mutants of the influenza virus hemagglutinin glycoprotein, Cell 40: 401–439.CrossRefGoogle Scholar
  21. Daniels, R. S., Jeffries, S., Yates, P., Schild, G. C., Rogers, G. N., Paulson, J. C., Wharton, S. A., Douglas, A. R. Skehel, J. J., and Wiley, D. C., 1987, The receptor-binding and membrane-fusion properties of influenza virus variants selected using anti-haemagglutinin monoclonal antibodies, EMBO J. 6: 1459–1465.PubMedGoogle Scholar
  22. Davis, M. M., and Bjorkman, P. J., 1988, T-cell antigen receptor genes and T-cell recognition, Nature 334: 395–402.PubMedCrossRefGoogle Scholar
  23. Delisi, C., and Berzofsky, J. A., 1985, T-cell antigenic sites tend to be amphipathic structures, Proc. Natl. Acad. Sci. USA 82: 7048–7052.PubMedCrossRefGoogle Scholar
  24. Doms, R. W., and Helenius, A., 1986, Quaternary structure of influenza virus hemagglutinin after acid treatment, J. Virol. 60: 833–839.PubMedGoogle Scholar
  25. Doms, R. W., Gething, M. J., Henneberry, J., White, J., and Helenius, A. J., 1986, Variant influenza virus hemagglutinin that induces fusion at elevated pH, Virology 57: 603–13.Google Scholar
  26. Fox, B. S., Chen, C., Fraga, E., French, C., Singh, B., and Schwartz, R. H., 1987, Functional distinct agretopic and epitopic sites, J. Immun. 139: 1578–1588.PubMedGoogle Scholar
  27. Gething, M. J., White, J. M., and Waterfield, M. D., 1978, Purification of the fusion protein of Sendai virus: Analysis of the NH2-terminal sequence generated during precursor activation, Proc. Natl. Acad. Sci. USA 75: 2737–2740.PubMedCrossRefGoogle Scholar
  28. Gottschalk, A., 1959, The Viruses, Vol. 3, (F. M. Burnet and W. M. Stanley, eds), pp. 51–61, Academic Press, New York.Google Scholar
  29. Grey, H. M., Kubo, R. T., Colon, S. M., Poulik, M. D., Cresswell, P., Springer, T., Thrner, M., and Strominger, J. L., 1973, The small subunit of HL-A antigens is 132-microglobulin, J. Exp. Med. 138: 1608–1612.PubMedCrossRefGoogle Scholar
  30. Hedrick, S. M., Nielsen, E. A., Kavaler, J., Cohen, D., and Davis, M. M., 1984, Sequence relationships between putative T-cell receptor polypeptides and immunoglobulins, Nature 308: 153–158.PubMedCrossRefGoogle Scholar
  31. Holmes, N., and Parham, P., 1985, Exon shuffling in vivo can generate novel HLA class I molecules, EMBO J. 4: 2849–2854.PubMedGoogle Scholar
  32. Jackson, D. C., and Nestorowicz, A., 1985, Antigenic determinants of influenza virus hemagglutinin, Virology 145: 72–83.PubMedCrossRefGoogle Scholar
  33. Kaufman, J. F., Auffray, C., Korman, A. J., Shackelford, D. A., and Strominger, J. C., 1984, The class II molecules of the human and murine major histocompatibility complex, Cell 36: 1–13.PubMedCrossRefGoogle Scholar
  34. Kronis, K. A., and Carver, J. P., 1982, Specificity of isolectins of wheat germ agglutinin for sialyloligosaccharides: A 360-MHz proton nuclear magnetic resonance binding study, Biochemistry 21: 3050–3057.PubMedCrossRefGoogle Scholar
  35. Lear, J. D., and Degrado, W. F., 1987, Membrane binding and conformational properties of peptides representing the NH2 terminus of influenza HA-2, J. Biol. Chem. 262: 6500–6505.PubMedGoogle Scholar
  36. Lesk, A. M., and Hardman, K. D., 1982, Computer-generated schematic diagrams of protein structures, Science 216: 539–540.PubMedCrossRefGoogle Scholar
  37. Lopez de Castro, J., Barbosa, J. A., Krangel, M. S., Biro, A., and Strominger, J. L., 1985, Structural analysis of the functional sites of Class I HLA antigens, Immunol. Rev. 85: 149–168.Google Scholar
  38. Nathenson, S. G., Geliebler, J., Pfaffenbach, G. M., and Zeff, R. A., 1986, Murine major histocompatibility complex Class-I mutants: Molecular analysis and structure-function implications, Annu. Rev. Immun. 4: 471–502.PubMedCrossRefGoogle Scholar
  39. Nestorowicz, A., Laver, W. G., and Jackson, D. C., 1985, Antigenic determinants of influenza virus haemagglutinin, J. Gen. Virol. 66: 1687–1695.PubMedCrossRefGoogle Scholar
  40. Orr, H. T., Lancet, D., Robb, R. J., Lopez de Castro, J. A., and Strominger, J. L., 1979a, The heavy chain of human histocompatibility antigen HLA-B7 contains an immunoglobulin-like region, Nature 282: 266–270.PubMedCrossRefGoogle Scholar
  41. On, H. T., Lopez de Castro, J. A., Parham, P., Ploegh, H. L., and Strominger, J. L., 1979b, Comparison of amino acid sequences of two human histocompatibility antigens, HLA-A2 and HLA-B7: Location of putative alloantigenic sites, Proc. Natl. Acad. Sci. USA 76: 4395–4399.Google Scholar
  42. Orr, H. T., Lopez de Castro, J. A., Lancet, D., and Strominger, J. L., 1979c, Complete amino acid sequence of a papain-solubilized human histocompatibility antigen, HLA-B7. 2. Sequence determination and search for homologies, Biochemistry 18: 5711–5719.PubMedCrossRefGoogle Scholar
  43. Paulson, J. C., 1985, Interactions of animal viruses with cell surface receptors, in: The Receptors, Vol. 2 ( P. M. Conn, ed.), pp. 131–219, Academic Press, Orlando, FL.Google Scholar
  44. Paulson, J. C., Sadler, J. E., and Hill, R. L., 1979, Restoration of specific Myxovirus receptors to Asialoerythrocytes by incorporation of sialic acid with pure sialyltransferases, J. Biol. Chem, 254: 2120–2124.PubMedGoogle Scholar
  45. Peterson, P. A., Cunningham, B. A., Berggard, I., and Edelman, G. M., 1972, MicroglobulinA free immunoglobulin domain, Proc. Natl. Acad. Sci. USA 69: 1697–1701.PubMedCrossRefGoogle Scholar
  46. Peterson, P. A., Rask, L., and Lindblom, J. B., 1974, Highly purified papain-solubilized HL-A antigens contain R2-Microglobulin, Proc. Natl. Acad. Sci., USA 71: 34–39.Google Scholar
  47. Pritchett, T. J., 1987, Ph.D. thesis, Univ. of Calif., Los Angeles.Google Scholar
  48. Richardson, C. D., Scheid, A., and Choppin, P. W., 1980, Specific inhibition of Paramyxovirus and Myxovirus replication by oligopeptides with amino acid sequences similar to those at the N-termini of the F1 and HA2 viral polypeptides, Virology 105: 205–222.PubMedCrossRefGoogle Scholar
  49. Rogers, G. N., and Paulson, J. C., 1982, Survey of receptor specificities of human and animal influenza viruses, Fed. Proc. 41: 5880.Google Scholar
  50. Rogers, G. N., and Paulson, J. C., 1983, Receptor determinants of human and animal influenza virus isolates: Differences in receptor specificity of the H3 hemagglutinin based on species of origin, Virology 127: 361–373.PubMedCrossRefGoogle Scholar
  51. Rogers, G. N., Pritchett, T., and Paulson, J. C., 1983a, Correlation of receptor specificity and glycoprotein inhibitor sensitivity for influenza H3 hemagglutinins, 1983 Fed. Proc. 42: 2181.Google Scholar
  52. Rogers, G. N., Paulson, J. C., Daniels, R. S., Skehel, J. J., Wilson, I. A., and Wiley, D. C., 1983b, Single amino acid substitutions in influenza haemagglutinin change receptor binding specificity, Nature 304: 76–79.PubMedCrossRefGoogle Scholar
  53. Rossmann, M. G., Arnold, E., Erickson, J. W., Frankenberger, E. A., Griffith, J. P., Hecht, H-J., Johnson, J. E., Kamer, G., Luo, M., Mosser, A. G., Rueckert, R. R., Sherry, B., Vriend, G., 1986, Structure of a human common cold virus and functional relationship to other picornaviruses, Nature 317: 145–153.CrossRefGoogle Scholar
  54. Ron, R., Orlich, M., Klenk, H.-D., Wang, M. L., Skehel, J. J., and Wiley, D. C., 1985, Studies on the adaptation of influenza viruses to MDCK cells, EMBO J. 3: 3329–3332.Google Scholar
  55. Ruigrok, R. W. H., Aitken, A., Calder, L. J., Martin, S. R. Skehel, J. J., Wharton, S. A., Weis, W., and Wiley, D. C., 1988, Studies on the structure of the influenza virus haemagglutinin at the pH of membrane fusion, J. Gen. Virol. 69: 2785–2795.Google Scholar
  56. Saito, H., Kranz, D. M., Takagaki, Y., Hayday, A. C., Eisen, H. N., and Tonegawa, S., 1984, A third rearranged and expressed gene in a clone of cytotoxic T lymphocytes, Nature 312: 36–40.PubMedCrossRefGoogle Scholar
  57. Sauter, N. K., Bednarski, M. D., Wurzburg, B. A., Hanson, J. E., Whitesides, G. M., Skehel, J. J., and Wiley, D. C., 1989, Hemagglutinins from two influenza virus variants bind to sialic acid derivatives with millimolar dissociation constants: a 500 MHz proton nuclear magnetic resonance study, Biochemistry 28: 8388–8396.PubMedCrossRefGoogle Scholar
  58. Scheid, A., Graves, M., Silver, S., and Choppin, P. W., 1978, in: Negative Strand Viruses and the Host Cell, (B. W. J. Mahy and R. D. Barry, eds.), pp. 181–193, Academic Press, London.Google Scholar
  59. Schwartz, R. H., 1983, The role of gene products of the major histocompatibility complex in T cell activation and cellular interactions, in: Fundamental Immunology ( W. E. Paul, ed.), pp. 379–399, Raven Press, New York.Google Scholar
  60. Sette, A., Buus, S., Colon, S., Smith, J. A., Miles, C., and Grey, H. M., 1987, Structural characteristics of an antigen required for its interaction with la and recognition by T cells, Nature 328: 395–399.PubMedCrossRefGoogle Scholar
  61. Sheriff, S., Silverton, E. W., Padlan, E. A., Cohen, G. H., Smith-Gill, S. J., Finzel, B. C., and Davies, D. R., 1987, Three-dimensional structure of an antibody—antigen complex, Proc. Natl. Acad. Sci. USA 84: 8075–8079.PubMedCrossRefGoogle Scholar
  62. Skehel, J. J., and Waterfield, M. D., 1975, Studies on the primary structure of the influenza virus haemagglutinin, Proc. Natl. Acad. Sci. USA 72: 93–97.PubMedCrossRefGoogle Scholar
  63. Skehel, J. J., Bayley, P. M., Brown, E. B., Martin, S. R., Waterfield, M. D., White, J. M., Wilson, I. A., and Wiley, D. C., 1982, Changes in the conformation of influenza virus hemagglutinin at the pH optimum of virus-mediated fusion, Proc. Natl. Acad. Sci. USA 79: 968–972.PubMedCrossRefGoogle Scholar
  64. Skehel, J. J., Stevens, D. J., Daniels, R. S., Douglas, A. R., Knossow, M., Wilson, I. A., and Wiley, D. C., 1984, A carbohydrate side chain on hemagglutinins of Hong Kong influenza viruses inhibits recognition by a monoclonal antibody, Proc. Natl. Acad. Sci. USA 81: 1779–1783.PubMedCrossRefGoogle Scholar
  65. Smithies, O., and Poulik, M. D., 1982, Initiation of protein synthesis at an unusual position in an immunoglobulin gene? Science 175: 187–189.CrossRefGoogle Scholar
  66. Suzuki, U., Matsunaga, M., and Masumoto, M., 1985, N-Acetylneuraminyllactosylceramide, GM3_NeuAc, a new influenza A virus receptor which mediates the adsorption-fusion process of viral infection, J. Biol. Chem. 260: 1362–1365.PubMedGoogle Scholar
  67. Townsend, A., 1987, Recognition of influenza virus proteins by cytotoxic T lymphocytes, Immunl. Res. 6: 80–100.CrossRefGoogle Scholar
  68. Tragardh, L., Rask, L., Wiman, K., Fohlman, J., and Peterson, P. A., 1979, Amino acid sequence of an immunoglobulin-like HLA antigen heavy chain domain, Proc. Natl. Acad. Sci. USA 76: 5839–5842.PubMedCrossRefGoogle Scholar
  69. Watts, T. H., Gariepy, J., Schoonik, G. K., and McConnell, H. M., 1985, T-cell activation by peptide antigen: Effect of peptide sequence and method of antigen personation, Proc. Natl. Acad. Sci. USA 82: 5480–5484.PubMedCrossRefGoogle Scholar
  70. Webster, R. G., Brown, L. E., and Jackson, D. C., 1983, Changes in the antigenicity of the hemagglutinin molecule of H3 influenza virus at acidic pH, Virology 126: 587–599.PubMedCrossRefGoogle Scholar
  71. Weis, W., Brown, J. A., Cusack, S., Paulson, J. C., Skehel, J. J., and Wiley, D. C., 1988, Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid, Nature 333: 426–431.PubMedCrossRefGoogle Scholar
  72. Wharton, S. A., Martin, S. R., Ruigrok, R. W. H., Skehel, J. J., and Wiley, D. C., 1988, Membrane fusion by peptide analogues of influenza virus haemagglutinin, J. Gen. Virol. 69:1847–1857.Google Scholar
  73. White, J., and Wilson, I., 1988, Anti-peptide antibodies detect steps in a protein conformational change: Low-pH activation of the influenza virus hemagglutinin, J. Cell. Biol. 105: 2887–2896.CrossRefGoogle Scholar
  74. White, J., Kielian, M., and Helenius, A., 1983, Membrane fusion proteins of enveloped animal viruses, Q. Rev. Biophys. 16: 151–195.PubMedCrossRefGoogle Scholar
  75. Wiley, D. C., and Skehel, J. J., 1987, The structure and function of the hemagglutinin membrane glycoprotein of influenza virus, Annu. Rev. Biochem. 56: 365–94.PubMedCrossRefGoogle Scholar
  76. Wiley, D. C., Wilson, I. A., and Skehel, J. J., 1981, Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation, Nature 289: 373–378.PubMedCrossRefGoogle Scholar
  77. Yanagi, Y., Yoshikai, Y., Leggett, K., Clark, S. P., Aleksander, I., and Mak, T. W., 1984, A human T cell-specific cDNA clone encodes a protein having extensive homology to immunoglobulin chains, Nature 308: 145–149.PubMedCrossRefGoogle Scholar
  78. Yewdell, J. W., Gerhard, W., and Bachi, T., 1983, Monoclonal anti-hemagglutinin antibodies detect irreversible antigenic alterations that coincide with the acid activation of influenza virus A/PR/834-mediated hemolysis, J. Virol. 48: 239–248.PubMedGoogle Scholar
  79. Ziegler, H. K., and Unanue, E. R., 1982, Decrease in macrophage antigen catabolism caused by ammonia and chloroquin is associated with inhibition of antigen presentation to T cells, Proc. Natl. Acad. Sci. USA 79: 175–178.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Don C. Wiley
    • 1
  1. 1.Department of Biochemistry and Molecular Biology and Howard Hughes Medical InstituteHarvard UniversityCambridgeUSA

Personalised recommendations