Skip to main content

Part of the book series: New Horizons in Therapeutics ((NHTH))

  • 65 Accesses

Abstract

Insulin-dependent diabetic patients need a constant supply of basal insulin to control blood glucose between meals, in addition to meal-related bolus insulin to counter the peak in glucose following a meal. Intensive basal/bolus insulin regimens have been introduced in order to improve blood glucose control, particularly in Scandinavia and England. The long-acting insulins used to provide the basal supply come in the form of neutral, crystalline suspensions, obtained by crystallization using eitherZn2+ (Lente-type preparations) or protamine (NPHtype preparations). These suspensions require thorough shaking prior to injection in order to ensure homogeneity of the suspension and correct dosage. Furthermore, the inter-and intra-patient absorption of insulin suspensions is extremely variable: the T50% (i.e., the time taken for 50% of the insulin to disappear from the injection site) ranges from 8 to 72 hr (Lauritzen et al., 1979). Whereas the homogeneity problem of suspensions could be overcome if a soluble, prolonged-acting insulin was made available, the variability in absorption caused by the physiological conditions, like blood flow at the site of injection, could hardly be totally eliminated by applying new principles of prolongation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Binder, C., 1969, Absorption of Injected Insulin, Munksgaard, Copenhagen.

    Google Scholar 

  • Blundell, T. L.. Cutfield, J. F., Cutfield, S. M., Dodson, E. J., Dodson, G. G., Hodgkin. D. C.. and Mercola, D. A.. 1972, Three-dimensional atomic structure of insulin and its relationship to activity, Diabetes 21(suppl. 2): 492–505.

    PubMed  CAS  Google Scholar 

  • Bradbury, A. F., Finnic, M. D. A., and Smyth. D. G., 1982, Mechanism of C-terminal amide formation by pituitary enzymes. Nature 298: 686–688.

    Article  PubMed  CAS  Google Scholar 

  • Brange, J., Skelbaek-Pedersen. B., Langkjaer, L. Damgaard. U., Ege, H., Havelund. S.. Heding, L. G., Jorgensen. K. H., Lykkeberg, J.. Markussen, J., Pingel, M. and Rasmussen. E., 1987, Galenics of Insulin, pp. 36–38. 54–57, Springer-Verlag. Berlin.

    Google Scholar 

  • Brange, J., Ribel. U., Hansen. J. F., Dodson, G., Hansen, M. T., Havelund, S., Melberg, S. G., Norris. F., Norris, K., Snel, L., Sorensen, A. R., and Voigt, H. O., 1988, Monomeric insulins obtained by protein engineering and their medical implications, Nature 333: 679–682.

    Article  PubMed  CAS  Google Scholar 

  • British Pharmacopoeia, 1980, Her Majesty’s Stationery Office. London, A 142.

    Google Scholar 

  • European Pharmacopoeia, 1984, V.2.2.3. Assay of insulin method C, Her Majesty’s Stationery Office, London.

    Google Scholar 

  • Geiger, T., and Clarke, S.. 1987. Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides, J. Biol. Chem. 262: 785–794.

    PubMed  CAS  Google Scholar 

  • Gliemann. J. and Gammeltoft. S., 1974, The biological activity and the binding affinity of modified insulins determined on isolated rat fat cells, Diabetologia 10: 105–113.

    Article  PubMed  CAS  Google Scholar 

  • Helbig, H-J., 1976, Insulindimere aus der B-Komponente von Insulinpräparationen, Rheinisch-Westfälischen Technischen Hochschule, Aachen.

    Google Scholar 

  • Hodgkin, D. C., Dodson, E., Dodson, G., and Reynolds. C., 1983, Insulin, Biochem. Soc. Trans. 11: 411–417.

    PubMed  CAS  Google Scholar 

  • Hübinger, A., Becker, A., and Gries, F. A., 1988, Total insulin levels in Type 1 diabetic patients with insulin antibodies and their effect on insulin requirement and metabolic control, Diabetes Res. 7: 65–69.

    PubMed  Google Scholar 

  • Kobayashi, M., Ishibashi, O., Takata, Y., Haneda, M., Maegawa, H., Watanabe, N., and Shigeta, Y., 1985, Prolonged disappearance rate of a structurally abnormal mutant insulin from the circulation in humans, J. Clin. Endocrinol. Metab. 61: 1142–1145.

    Article  PubMed  CAS  Google Scholar 

  • Lauritzen, T., 1985, Pharmacokinetic and Clinical Aspects of Intensified Subcutaneous Insulin Therapy, Laegeforeningens Forlag, Copenhagen.

    Google Scholar 

  • Lauritzen, T., Faber, O. K., and Binder, C., 1979, Variations in 125I-insulin absorption and blood glucose concentration, Diabetologia 17: 291–295.

    Article  PubMed  CAS  Google Scholar 

  • Leach, S. J., and Lindley, H., 1953, The kinetics of hydrolysis of the amide group in proteins and peptides, Trans. Faraday Soc. 49: 915–925.

    Article  CAS  Google Scholar 

  • Markussen, J., 1982, U.S. patent 4, 343, 898.

    Google Scholar 

  • Markussen, J., 1985, Comparative reduction/oxidation studies with single chain des-(B30) insulin and porcine proinsulin, Int. J. Peptide Protein Res. 25: 431–434.

    Article  CAS  Google Scholar 

  • Markussen, J., 1987, Human Insulin by Tryptic Transpeptidations of Porcine Insulin and Biosynthetic Precursors, MTP Press, Lancaster.

    Google Scholar 

  • Markussen, J., Jorgensen, K. H., Sorensen, A. R., and Thim, L., 1985, Single chain des-(B30) insulin, Int. J. Peptide Protein Res. 26: 70–77.

    Article  CAS  Google Scholar 

  • Markussen, J., Hougaard, P., Ribel, U., Sorensen, A. R., and Sorensen, E., 1987a, Soluble, Prolonged-acting insulin derivatives. I. Degree of protraction and crystallizability of insulins substituted in the termini of the B-chain, Protein Engineering 1(3): 205–213.

    CAS  Google Scholar 

  • Markussen, J., Diers, I., Engesgaard, A., Hansen, M. T., Hougaard, P., Langkjaer, L., Norris, K., Ribel, U., Sorensen, A. R., Sorensen, E., and Voigt, H. O., 1987b, Soluble prolonged-acting

    Google Scholar 

  • insulin derivatives. II. Degree of protraction and crystallizability of insulins substituted in positions A17, B8, B13, B27 and B30, Protein Engineering 1(3):215–223.

    Google Scholar 

  • Markussen, J., Damgaard, U., Diers, I., Fiil, N., Hansen, M. T., Larsen, P., Norris, F., Norris, K., Schou, O., Snel, L., Thim, L., and Voigt, H. O., 1987c, Biosynthesis of human insulin in yeast via single-chain precursors, in: Peptides 1986( D. Theodoropoulos, ed.), pp. 189–194, Walter de Gruyter, Berlin.

    Google Scholar 

  • Markussen, J., Diers, I., Hougaard, P., Langkjaer, L., Norris, K., Snel, L., Sorensen, A. R., Sorensen, E., and Voigt, H. O., 1988a, Soluble, prolonged-acting insulin derivatives. III. Degree of protraction, crystallizability and chemical stability of insulins substituted in positions A21, B13, B23, B27 and B30, Protein Engineering, 2(2): 157–166.

    CAS  Google Scholar 

  • Markussen, J., Hansen, M. T., Norris, K., and Sorensen, E., 1988b, Synthesis of insulins substituted in positions A17, B13, B27 and in the terminals of the B-chain, combining genetic engineering and Cryptic transpeptidation in organic-aqueous medium, in: Peptide Chemistry 1987( T. Shiba, and S. Sakakibara, eds.), Protein Research Foundation, Osaka pp. 417–422.

    Google Scholar 

  • Marshall, M. O., Heding, L. G., Villumsen, J., Akerblom, H. K., Baevre, H., Dahlquist, G., Kjaergaard, J-J., Knip, M, Lindgren, F., Ludvigsson, J., Persson, B., Rilva, A., Stenhammer, L., Stromberg, L., Sovik, O., Thalme, B., Vidnes, J., and Wefring, K., 1988, Development of insulin antibodies, metabolic control and B-cell function in newly diagnosed insulin dependent diabetic children treated with monocomponent human insulin or monocomponent porcine insulin, Diabetes Res. 9: 169–175.

    PubMed  CAS  Google Scholar 

  • Moody, A. J., Stan, M. A., and Stan, M., 1974, A simple free fat cell bioassay for insulin, Horm. Metab. Res. 6: 12–16.

    Article  PubMed  CAS  Google Scholar 

  • Schlichtkrull, J., 1958, Insulin Crystals, Munksgaard, Copenhagen.

    Google Scholar 

  • Schlichtkrull, J., Pingel, M., Heding, L. G., Brange, J., and Jorgensen, K. H., 1975, Insulin preparations with prolonged effect, in: Handbook of Experimental Pharmacology, Vol. XXXII/2 ( A. Hasselblatt and F. v. Bruchhausen, eds.), Springer-Verlag, Berlin pp. 729–777.

    Google Scholar 

  • Sundby, F., 1962, Separation and characterization of acid-induced insulin transformation products by paper electrophoresis in 7 M urea, J. Biol. Chem. 237: 3406–3411.

    PubMed  CAS  Google Scholar 

  • Thim, L., Hansen, M. T., Norris, K., Hoegh, I., Boel, E., Forström, J., Ammerer, G., and Fiil, N. P., 1986, Secretion and processing of insulin precursors in yeast, Proc. Natl. Acad. Sci. USA 83: 6766–6770.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Markussen, J. (1990). Engineering Novel, Prolonged-Acting Insulins. In: Hook, J.B., Poste, G., Schatz, J. (eds) Protein Design and the Development of New Therapeutics and Vaccines. New Horizons in Therapeutics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5739-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5739-1_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5741-4

  • Online ISBN: 978-1-4684-5739-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics