Skip to main content

Part of the book series: New Horizons in Therapeutics ((NHTH))

  • 62 Accesses

Abstract

Our ability to carry out selective chemical transformations on biologically important molecules—including proteins, nucleic acids, and sugars—has been limited until recently to the specific reactions catalyzed by existing enzymes and the relatively indiscriminate reactions carried out by chemical reagents. The rational design of catalysts for the selective modification of structurally complex molecules would greatly impact on biochemistry, molecular biology, and medicine. Moreover, the synthesis and characterization of such catalysts should provide additional insight into the molecular basis for ligand-receptor recognition and catalysis. Crucial to the design of selective catalysts is the generation of highly selective binding sites. By taking advantage of the natural immune system, monoclonal antibody technology (Kohler and Milstein, 1975; Seiler et al., 1985) has made it possible to generate homogeneous ligand binding sites with enzymelike affinities and specificities. Antibodies have been selectively generated against biopolymers, such as nucleic acids, proteins, and polysaccharides, and smaller multifunctional molecules, such as steroids and prostaglandins. Antibodies bind ligands ranging in size from about 6 to 34 Å with association constants in the range of 104−1014 M−1 (Pressman and Grossberg, 1968; Goodman, 1975; Nisonoff et al., 1975). Antibody—ligand specificity is well illustrated by the following examples: antibodies generated against cis N-phenylmaleic acid monoamide bound the trans isomer with 103 lower affinity (Landsteiner and van der Scheer, 1934); antibodies against 3,17-androstenedione bound 3a, 17-dihydroxyandrostene with 103 lower affinity (Milewich et al.,1975).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bruice, T. C., 1959, Imidazole catalysis. The intramolecular nucleophilic catalysis of the hydrolysis of an acyl thiol, J. Am. Chem. Soc. 81: 5444–5449.

    Article  CAS  Google Scholar 

  • Bruice, T. C., and Schmir, G. L., 1958, Imidazole catalysis. The reaction of substituted imidazoles with phenyl acetates in aqueous solution, J. Am. Chem. Soc. 80: 148–156.

    Article  CAS  Google Scholar 

  • Chan, E. Y., Crampton, R. G., and Clapp, L. B., 1979, Benzothiazepinones, related compounds, and the Smiles rearrangement, Phosphorous Sulfur 7: 41–45.

    Article  CAS  Google Scholar 

  • Cochran, A., Sugasawara, R., and Schultz, P. G., 1988, Photosensitized cleavage of a thymine dimer by an antibody, J. Am. Chem. Soc. 110: 7888–7890.

    Article  CAS  Google Scholar 

  • Corey, D. R., and Schultz, P. G., 1987, Generation of a hybrid sequence-specific single-stranded deoxyribonuclease, Science 238: 1401–1403.

    Article  PubMed  CAS  Google Scholar 

  • Durfor, C. N., Bolin, R. J., Sugasawara, R., Massey, R. J., Jacobs, J. W., and Schultz, P. G., 1988, Antibody catalysis in reverse micelles, J. Am. Chem. Soc. 110: 8713–8714.

    Article  CAS  Google Scholar 

  • Givol, D., and Wilchek, M., 1977, Affinity labeling of antibody combining sites as illustrated by anti-dinitrophenyl antibodies, Methods Enzymol. 46: 479–492.

    Article  PubMed  CAS  Google Scholar 

  • Givol, D., Strausbauch, P. H., Hurwitz, E., Wilchek, M., Haimovich, J., and Eisen, H. N., 1971, Affinity labeling and cross-linking of the heavy and light chains of a myeloma protein with anti-2,4-dinitrophenyl activity, Biochemistry 10: 3461–3466.

    Article  PubMed  CAS  Google Scholar 

  • Goetzl, E. J., and Metzger, H., 1970, Affinity labeling of a mouse myeloma protein which binds nitrophenyl ligands, Biochemistry 9: 1267–1278.

    Article  PubMed  CAS  Google Scholar 

  • Goodman, J. W., 1975, in: The Antigens(M. Sela, ed.), Academic Press, New York, pp. 127–187.

    Google Scholar 

  • Grassetti, D. R., and Murray, J. S., 1967, Determination of sulfhydryl groups with 2,2’- or 4,4’dithiodipyridine, Arch. Biochem. Biophys. 119: 41–49.

    Article  PubMed  CAS  Google Scholar 

  • Haimovich, J., Eisen, H. N., Hurwitz, E., and Givol, D., 1972, Localization of affinity-labeled residues on the heavy and light chain of two myeloma proteins with anti-hapten activity, Biochemistry 11: 2389–2398.

    Article  PubMed  CAS  Google Scholar 

  • Haselkorn, D., Friedman, S., Givol, D., and Pecht, I., 1974, Kinetic mapping of the antibody combining site by chemical relaxation spectrometry, Biochemistry 13: 2210–2222.

    Article  PubMed  CAS  Google Scholar 

  • Hilvert, D., Carpenter, S. H., Nared, K. D., and Auditor, M. M., 1988, Catalysis of concerted reactions by antibodies: The Claisen rearrangement, Proc. Natl. Acad. Sci. U.S.A. 85: 4953–4955.

    Article  PubMed  CAS  Google Scholar 

  • Holbrook, J. J., and Ingram, V. A., 1973, Ionic properties of an essential histidine residue in pig heart lactate dehydrogenase, Biochem. J. 131: 729–738.

    PubMed  CAS  Google Scholar 

  • Jackson, D. Y., Jacobs, J. W., Sugasawara, R., Reich, S. H., Bartlett, P. A., and Schultz, P. G., 1988, An antibody-catalyzed Claisen rearrangement, J. Am. Chem. Soc. 110: 4841–4842.

    Article  CAS  Google Scholar 

  • Jacobs, J. W., Schultz, P. G., Sugasawara, R., and Powell, M., 1987, Catalytic antibodies, J. Am. Chem. Soc. 109: 2174–2176.

    Article  CAS  Google Scholar 

  • Janda, K. D., Lerner, R. A., and Tramontano, A., 1988, Antibody catalysis of bimolecular amide formation, J. Am. Chem. Soc. 110: 4835–4837.

    Article  CAS  Google Scholar 

  • Kaiser, E. T., and Lawrence, D. S., 1984, Chemical mutation of enzyme active sites, Science 226: 505–511.

    Article  PubMed  CAS  Google Scholar 

  • Kohler, G., and Milstein, C., 1975, Continuous cultures of fused cells secreting antibody of predefined specificity, Nature 256: 495–497.

    Article  PubMed  CAS  Google Scholar 

  • Landsteiner, K., and van der Scheer, J., 1934, Serological studies on azoproteins, J. Exp. Med. 59: 751–768.

    Article  PubMed  CAS  Google Scholar 

  • Milewich, L., Sanchez, C. G., MacDonald, P. C., and Siiteri, P. K., 1975, Radioimmunoassay of androstenedione: The steroid molecule as a probe for antibody specificity, J. Steroid Biochem. 6: 1381–1387.

    Article  PubMed  CAS  Google Scholar 

  • Napper, A. D., Benkovic, S. J., Tramontano, A., and Lerner, R. A., 1987, A stereospecific cyclization catalyzed by an antibody, Science 237: 1041–1043.

    Article  PubMed  CAS  Google Scholar 

  • Nisonoff, A., Hopper, J., and Spring, S., 1975, The Antibody Molecule, Academic Press, New York.

    Google Scholar 

  • Pollack, S. J., and Schultz, P. G., 1987, Antibody catalysis by transition state stabilization, Cold Spring Harbor Symp. Quant. Biol. 52: 97–104.

    Article  PubMed  CAS  Google Scholar 

  • Pollack, S. J., and Schultz, P. G., 1989, A semisynthetic catalytic antibody, J. Am. Chem. Soc. 111: 1929–1931.

    Article  CAS  Google Scholar 

  • Pollack, S. J., Jacobs, J. W., and Schultz, P. G., 1986, Selective chemical catalysis by an antibody, Science 234: 1570–1573.

    Article  PubMed  CAS  Google Scholar 

  • Pollack, S. J., Nakayama, G. R., and Schultz, P. G., 1988, Introduction of nucleophiles and spectroscopic probes into antibody combining sites, Science 242: 1038–1041.

    Article  PubMed  CAS  Google Scholar 

  • Pressman, D., and Grossberg, A., 1968, The Structural Basis of Antibody Specificity, Benjamin, New York.

    Google Scholar 

  • Raso, V., and Stollar, B. D., 1975, The antibody—enzyme analogy. Characterization of antibodies to phosphopyridoxyltyrosine derivatives, Biochemistry 14: 584–591.

    Article  PubMed  CAS  Google Scholar 

  • Seiler, F. R., Gronski, P., Kurrle, R., Luben, G., Harthus, H., Ax, W., Bosslet, K., and Schwick, H., 1985, Monoclonal antibodies: their chemistry, functions, and possible uses, Angew. Chem. Int. Ed. Engl. 24: 139–226.

    Article  Google Scholar 

  • Shokat, K. M., Leumann, C. H., Sugasawara, R., and Schultz, P. G., 1988, An antibody-mediated redox reaction, Angew. Chem. Int. Ed. Eng. 27: 1172–1174.

    Article  Google Scholar 

  • Strausbauch, P. H., Weinstein, Y., Wilchek, M., Shaltiel, S., and Givol, D., 1971, A homologous series of affinity labeling reagents and their use in the study of antibody binding sites, Biochemistry 10: 4342–4348.

    Article  PubMed  CAS  Google Scholar 

  • Street, J. P., Skorey, K. I., Brown, R. S., and Ball, R. G., 1985, Biomimetic models for cysteine proteases, J. Am. Chem. Soc. 107: 7669–7679.

    Article  CAS  Google Scholar 

  • Tramontano, A., Janda, K. D., and Lerner, R. A., 1986, Catalytic antibodies, Science 234: 1566–1570.

    Article  PubMed  CAS  Google Scholar 

  • Zuckermann, R. N., Corey, D. R., and Schultz, P. G., 1987, Efficient methods for attachment of thiol specific probes to the 3’-ends of synthetic oligodeoxyribonucleotides, Nucleic Acids Res. 15: 5305–5321.

    Article  PubMed  CAS  Google Scholar 

  • Zuckermann, R. N., Corey, D. R., and Schultz, P. G., 1988, Site-selective cleavage of RNA by a hybrid enzyme, J. Am. Chem. Soc. 110: 1614–1615.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Pollack, S.J., Schultz, P.G. (1990). Semisynthetic Catalytic Antibodies. In: Hook, J.B., Poste, G., Schatz, J. (eds) Protein Design and the Development of New Therapeutics and Vaccines. New Horizons in Therapeutics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5739-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5739-1_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5741-4

  • Online ISBN: 978-1-4684-5739-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics