Antibody-Mediated Drug Delivery

  • John N. Weinstein
  • Kenji Fujimori
Part of the New Horizons in Therapeutics book series (NHTH)


Antibodies are quintessentially “information macromolecules.” Since the information resides in their antigen-binding sites, it is not surprising that most of the contributions on antibodies in this volume have focused on binding. That is, they have focused on structures and processes that influence the last few nanometers before molecular docking. Here we will consider the prior process, the pharmacokinetic path by which an antibody molecule reaches the proximity of its target antigen. That this perspective is important to the rational design of next-generation ligand molecules should require no argument. Although the title of this chapter emphasizes antibody—drug conjugates, we will focus on generic issues of pharmacology that apply to any of the forms in which antibodies (or, for that matter, other biological ligands) are used in vivo.


Capillary Wall Tumor Spheroid Multicellular Tumor Spheroid Hydrostatic Pressure Gradient Biological Ligand 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrams, P. G., and Oldham, R. K., 1985, Monoclonal antibody therapy of solid tumors, in: Monoclonal Antibody Therapy of Human Cancer, ( K. A. Foon and A. C. Morgan, Jr., eds.), pp. 103–120, Martins Nijhoff, Boston.CrossRefGoogle Scholar
  2. Black, C. D. V., Atcher, R. W., Barbet, J., Brechbiel, M. W., Holton, O. D., III, Hines, J. J., Gansow, O. A., and Weinstein, J. N., 1988, Selective ablation of B lymphocytes in vivo by an alpha emitter, 212bismuth, chelated to a monoclonal antibody, Antibody Immunoconjugates, Radiopharm. 1: 43–53.Google Scholar
  3. Blasberg, R. G., Nakagawa, H., Bourdon, M. A., Groothuis, D. R., Patlak, C. S., and Binger, D. D., 1987, Regional localization of a glioma-associated antigen defined by monoclonal antibody. 8106 in vivo: Kinetics and implications for diagnosis and therapy, Cancer Res. 47: 4432–4443.PubMedGoogle Scholar
  4. Bundgaard, M., 1980, Transport pathways in capillaries—hi search of pores, Annu. Rev. Physiol. 42: 325–336.PubMedCrossRefGoogle Scholar
  5. Covell, D. G., Barbet, J., Holton, O. D., III, Black, C. D. V., and Weinstein, J. N., 1986, The pharmacokinetics of monoclonal IgG1, F(ab’)2, and Fab’ in mice, Cancer Res. 46: 3969–3978.PubMedGoogle Scholar
  6. Del Vecchio, S., Reynolds, J. C., Blasberg, R. G., Neumann, R. D., Carrasquillo, J. A., Hellstrom, I., and Larson, S. M., 1988, Measurement of local Mr 97,000 and 250,000 protein antigen concentration in sections of human melanoma tumor using in vitroquantitative autoradiography, Cancer Res. 48: 5475–5481.PubMedGoogle Scholar
  7. Dower, S. K., Ozato, K., and Segal, D. M., 1984, The interaction of monoclonal antibodies with MHC class I antigens on mouse spleen cells I. Analysis of the mechanism of binding, J. Immunol. 132: 751–758.PubMedGoogle Scholar
  8. Eger, R. R., Covell, D. G., Carrasquillo, J. A., Abrams, P. G., Foon, K. A., Reynolds, J. C., Schroff, R. W., Morgan, A. C., Larson, S. M., and Weinstein, J. N., 1987, Kinetic model for the biodistribution of an 111In-labeled monoclonal antibody in humans, Cancer Res. 47: 3328–3336.PubMedGoogle Scholar
  9. Flessner, M. F., Dedrick, R. L., and Schultz, J. S., 1985, Exchange of macromolecules between peritoneal cavity and plasma, Am. J. Physiol. 248: H15–H25.PubMedGoogle Scholar
  10. Fletcher, J. E., 1978, Mathematical modeling of the microcirculation, Math. Biosci. 38: 159–202.CrossRefGoogle Scholar
  11. Fujimori, K., Covell, D. G., Fletcher, J. E., and Weinstein, J. N., 1989, Modeling analysis of IgG, F(ab’)2, and Fab distribution in tumors, Cancer Res. 49: 5656–5663.PubMedGoogle Scholar
  12. Holton, O. D., III, Black, C. D. V., Parker, R. J., Covell, D. G., Barbet, J., Sieber, S. M., Talley, M. J., and Weinstein, J. N., 1987, Biodistribution of monoclonal IgGl, F(ab’)2, and Fab’ in mice after intravenous injection: A comparison between anti-B cell (anti-LyB8.2) and irrelevant (MOPC-21) antibodies, J. Immunol. 139: 3041–3049.PubMedGoogle Scholar
  13. Jain, R. K., 1988, Determinants of tumor blood flow: a review, Cancer Res. 48: 2641–2658.PubMedGoogle Scholar
  14. Jain, R. K., and Baxter, L. T., 1988, Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: Significance of elevated interstitial pressure, Cancer Res. 48: 7022–7032.PubMedGoogle Scholar
  15. Jones, P. L., Gallagher, B. M., and Sands, H., 1986, Autoradiographic analysis of monoclonal antibody distribution in human colon and breast tumor xenografts, Cancer Immunol. Immunother. 22: 139–143.PubMedCrossRefGoogle Scholar
  16. Keenan, A. M., Weinstein, J. N., Carrasquillo, J. A., Bunn, P. A., Jr., Reynolds, J. C., Foon, K. A., Smarte, N. C., Ghosh, B., Fejka, R. M., Larson, S. M., and Mulshine, J. L., I987a, Immunolymphoscintigraphy and the dose-dependence of indium-111-labeled T101 monoclonal antibody in patients with cutaneous T-cell lymphoma. Cancer Res. 47:6093–6099.Google Scholar
  17. Keenan, A. M., Weinstein, J. N., Mulshine, J. L., Carrasquillo, J. A., Bunn, P. A., Jr., Reynolds, J. C., Foon, K. A., Perentesis, P., Ghosh, B., and Larson, S. M., 1987b, Evaluation of lymphoma by immunolymphoscintigraphy: Subcutaneous injection of indium-111-labeled TI01 monoclonal antibody, J. Nucl. Med. 28: 42–46.Google Scholar
  18. Lotze, M. T., Carrasquillo, J. A., Weinstein, J. N., Bryant, G. J., Perentesis, P., Reynolds, J. C., Matis, L. A., Eger, R. R., Keenan, A. M., Hellstrom, I., Hellstrom, K-E., and Larson, S. M., 1986, Monoclonal antibody imaging of human melanoma: Radioimmunodetection by subcutaneous or systemic injection, Ann. Surg. 204: 223–235.PubMedCrossRefGoogle Scholar
  19. McFadden, R., and Kwok, C., 1988, Mathematical model of simultaneous diffusion and binding of antitumor antibodies in multicellular human tumor spheroids, Cancer Res. 48: 4032–4037.PubMedGoogle Scholar
  20. Meeker, T. C., Lowder, J., Maloney, D. G., Miller, R. A., Thielemans, K., Warnke, R., and Levy, R., 1985, A clinical trial of anti-idiotype therapy for B cell malignancy, Blood 65: 1349–1363.PubMedGoogle Scholar
  21. Mulshine, J. L., Keenan, A. M., Carrasquillo, J. A., Walsh, T., Linnoila, R. I., Holton, O. D., Harwell, J. Larson, S. M., Bunn, P. A., and Weinstein, J. N., 1987, Immunolymphscintigraphy of pulmonary and mediastinal lymph nodes: A new approach to lung cancer imaging, Cancer Res. 47: 3572–3576.PubMedGoogle Scholar
  22. Parker, R. J., Weinstein, J. N., Keenan, A. M., Dower, S. K., Steller, M. A., Holton, O. D., III, and Sieber, S. M., 1987, Targeting of radiolabelled monoclonal antibodies in the lymphatics, Cancer Res. 47: 2073–2076.PubMedGoogle Scholar
  23. Patlak, C. S., Goldstein, D. A., and Hoffman, J. F., 1963, The flow of solute and solvent across a two-membrane system, J. Theoret. Biol. 5: 426–442.CrossRefGoogle Scholar
  24. Peterson, H. I., 1979, Tumor Blood Circulation, CRC Press, Boca Raton, FL.Google Scholar
  25. Poste, G., 1983, Liposome targeting in vivo: Problems and opportunities, Biol. Cell 47: 19–38.Google Scholar
  26. Poste, G., 1985, Drug targeting in cancer therapy, in: Receptor-Mediated Targeting of Drugs( G. Gregoriadis, G. Poste, J. Senior, and A. Trouet, eds.), pp. 427–474, Plenum Press, New York.Google Scholar
  27. Poste, G., and Fidler, I. J., 1980, The pathogenesis of cancer metastasis, Nature 283: 139–146.PubMedCrossRefGoogle Scholar
  28. Poste, G., and Kirsh, R., 1983, Site-specific (targeted) drug delivery in cancer therapy, Biotechnology 1: 869–878.CrossRefGoogle Scholar
  29. Poznansky, M. J., and Juliano, R. L., 1984, Biological approaches to the controlled delivery of drugs: A critical review, Pharmacol. Rev. 36: 277–335.PubMedGoogle Scholar
  30. Renkin, E. M., 1977, Multiple pathways of capillary permeability, Circ. Res. 41: 735–743.PubMedGoogle Scholar
  31. Rippe, B., and Haraldsson, B., 1987, Fluid and protein fluxes across small and large pores in the microvasculature. Application of two-pore equations, Acta Physiol. Scand. 131: 411–428.PubMedCrossRefGoogle Scholar
  32. Schlom, J., Colcher, D., Hand, P. H. Wunderlich, D., Nuti, M., and Teramoto, Y. A., 1983, Antigenic heterogeneity, modulation and evolution in breast cancer lesions as defined by monoclonal antibodies, in: Understanding Breast Cancer: Clinical and Laboratory Concepts, ( M. Rich, J. C. Hager, and P. Furmanski, eds.), Marcel Dekker, New York pp. 315–358.Google Scholar
  33. Steller, M. A., Parker, R. J., Covell, D. G., Holton, O. D., III, Keenan, A. M., Sieber, S. M., and Weinstein, J. N., 1986, Optimization of monoclonal antibody delivery via the lymphatics: The dose-dependence, Cancer Res. 46: 1830–1834.PubMedGoogle Scholar
  34. Sutherland, R., Buchegger, F., Schreyer, M., Vacca, A., and Mach, J., 1987, Penetration and binding of radiolabeled anti-carcinoembrionic antigen monoclonal antibodies and their antigen binding fragments in human colon multicellular tumor spheroids, Cancer Res. 47: 1627–1633.PubMedGoogle Scholar
  35. Swabb, E. A., Wei, J., and Gullino, P. M., 1974, Diffusion and convection in normal and neoplastic tissues, Cancer Res. 34: 2814–2822.PubMedGoogle Scholar
  36. Weinstein, J. N., 1987, Liposomes in the diagnosis and treatment of cancer, in: Liposomes( M. Ostro, ed.), Marcel Dekker, New York pp. 277–338.Google Scholar
  37. Weinstein, J. N., Parker, R. J., Keenan, A. M., Dower, S. K., Morse, H. C., 3rd, and Sieber, S. M., 1982, Monoclonal antibodies in the lymphatics: Toward the diagnosis and therapy of tumor metastases, Science 218: 1334–1337.PubMedCrossRefGoogle Scholar
  38. Weinstein, J. N., Steller, M. A., Keenan, A. M., Covell, D. G., Key, M. E., Sieber, S. M., Oldham, R. K., Hwang, K. M., and Parker, R. J., 1983, Monoclonal antibodies in the lymphatics: Selective delivery to lymph node metastases of a solid tumor, Science 222: 423–427.PubMedCrossRefGoogle Scholar
  39. Weinstein, J. N., Parker, R. J., Holton, O. D., III, Keenan, A. M., Covell, D. G., Black, C. D. V., and Sieber, S. M., 1985, Lymphatic delivery of monoclonal antibodies: Potential for detection and treatment of lymph node metastases, Cancer Invest. 3: 85–95.PubMedCrossRefGoogle Scholar
  40. Weinstein, J. N., Black, C. D. V., Barbet, J., Eger, R. R., Parker, R. J., Holton, O. D., III, Mulshine, J. L., Keenan. A. M., Larson, S. M., Carrasquillo, J. A., Sieber, S. M., and Covell, D. G., 1986, Selected issues in the pharmacology of monoclonal antibodies, in: Site-Specific Drug Delivery, ( E. Tomlinson and S. S. Davis, eds.), pp. 81–91, Wiley, New York.Google Scholar
  41. Weinstein, J. N., Covell, D. G., Barbet, J., Eger, R. R., Holton, O. D., III, Talley, M. J., Parker, R. J., and Black, C. D. V., 1987a, Local and cellular factors in the pharmacology of monoclonal antibodies, in: Membrane Mediated Toxicity( B. Bonavida and R. J. Collier, eds.), pp. 279–289, Alan R. Liss, New York.Google Scholar
  42. Weinstein, J. N., Eger, R. R., Covell, D. G., Black, C. D. V., Mulshine, J., Carrasquillo, J. A., Larson, S. M., and Keenan, A. M., 1987b, The pharmacology of monoclonal antibodies, Ann. NY Acad. Sci. 507: 199–210.CrossRefGoogle Scholar
  43. Weiss, L., and Greep, R. O., 1977, Histology, McGraw-Hill, San Francisco.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • John N. Weinstein
    • 1
    • 2
  • Kenji Fujimori
    • 1
    • 2
  1. 1.Theoretical Immunology Section, Laboratory of Mathematical BiologyDCBDBethesdaUSA
  2. 2.National Cancer InstituteNational Institutes of HealthBethesdaUSA

Personalised recommendations