Control of the Biological Dispersion of Therapeutic Proteins

  • E. Tomlinson
Part of the New Horizons in Therapeutics book series (NHTH)


Proteins have immense structural variety and variability, ergo their consideration and use of therapeutic agents able to elicit a pharmacological response. As for conventional drugs, much of today’s activity with therapeutic proteins in classical research and development environments ignores the issues of site(s) of action and routes, rates, and frequency of administration when selecting a drug to be developed. Selective drug delivery and targeting seeks to achieve the optimal arrival of a drug at its site of action in a manner that is appropriate for the disease and the drug, and which leads to a significant reduction in the possibility of drug side effects. This chapter examines how the control of the biological dispersion of proteins may be achieved using protein remodeling, protein hybridization, and synthetic adduction, as well as by modulating their administration.


Sialic Acid Polyethylene Glycol Therapeutic Protein Diphtheria Toxin Hybrid Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abuchowski, A., Van Es, T., Palczuk, N. C., and Davis, F. F., 1977, Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol, J. Biol. Chem. 252: 3578–3581.PubMedGoogle Scholar
  2. Aggarawal, B. B., Eessalu, T. E., and Hass, P. E., 1985, Characterisation of receptors for human tumour necrosis factor and their regulation by -y-interferon, Nature 318: 665–667.CrossRefGoogle Scholar
  3. Akiyama, A., Bednarski, M., Kim, M-J., Simon, E. S., Waldmann, H., and Whitesides, G. M., 1987, Enzymes in organic synthesis, Chem. Brit. 23(7): 645–654.Google Scholar
  4. Bachmair, A., Finley, D., and Varshaysky, A., 1986, In vivohalf-life of a protein is a function of its amino-terminal residue, Science 234: 179–186.Google Scholar
  5. Baenziger, J. U., 1985, The role of glycosylation in protein recognition, Am. J. Physiol. 121: 382–391.Google Scholar
  6. Baker, R. W., Tuttle, M. E., and Helwing, R., 1984, Novel erodible polymers for the delivery of macromolecules, Pharm. Technol. 8: 26–30.Google Scholar
  7. Benet, L. Z., 1978, Effect of route of administration and distribution on drug action, J. Pharmacokin. Biopharm. 6: 559–585.CrossRefGoogle Scholar
  8. Berger, M., Halban, P. A., Girardier, L., Seydoux, J., Offord, R. E., and Renold, A. E., 1979, Absorption kinetics of subcutaneously injected insulin. Evidence for degradation at the injection site, Diabetologia 17: 97–99.PubMedCrossRefGoogle Scholar
  9. Berger, E. G., Greber, U. F., and Mosbach, K., 1986, Galactosyltransferase-dependent sialylation of complex and endo-N-acetylglucosaminidase H-treated core N-glycans in vitro, FEBS Lett. 203: 64–68.PubMedCrossRefGoogle Scholar
  10. Berger, E. G., Müller, U., Aegerter, E., and Strous, G. J., 1987, Biology of galactosyltransferase: Recent developments, Biol. Chem. Trans. 15: 610–613.Google Scholar
  11. Blakey, D. C., and Thorpe, P. E., 1986, Effect of chemical deglycosylation on the in vivofate of ricin A-chain, Cancer Drug Delivery 3: 189–196.PubMedCrossRefGoogle Scholar
  12. Blohm, D., Bollschweiler, C., and Hillen, H., 1988, Pharmaceutical proteins, Angew. Chem. 100: 213–231.CrossRefGoogle Scholar
  13. Bocci, V., Corradeschi, F., Naldini, A., and Lencioni, E., 1986, Enteric absorption of human interferon a and 13 in the rat, Int. J. Pharm. 34: 111–114.CrossRefGoogle Scholar
  14. Brange, J., Ribel, U., Hansen, J. F., Dodson, G., Hansen, M. T., Havelund, S., Melberg, S. G., Norris, F., Norris, K., Snel, L., Sorensen, A. R., and Voigt, H. O., 1988, Monomeric insulins obtained by protein engineering and their medical implications, Nature 333: 679–682.PubMedCrossRefGoogle Scholar
  15. Cartlidge, S. A., Duncan, R., Lloyd, J. B., Kopeckovâ-Rejmanovâ, P., and Kopecek, J., 1987, Soluble crosslinked N-(2-hydroxypropyl)methacrylamide copolymers as potential drug carriers 3. Targeting by incorporation of galactosamine residues. Effect of route of administration, J. Controlled Res. 4: 265–278.CrossRefGoogle Scholar
  16. Castro, M. R., and Gras, J., 1984, The importance of rhythym of antigen administration in the kinetics of the IgM and IgG responses, Immunologia 3: 157–160.Google Scholar
  17. Chaudhary, V. K., Fitzgerald, D. J., Adhya, S., and Pastan, I., 1987, Activity of a recombinant fusion protein between transforming growth factor type a and Pseudomonastoxin, Proc. Natl. Acad. Sci. USA 84: 4538–4542.PubMedCrossRefGoogle Scholar
  18. Clark, R. G., and Robinson, I. C. A. F., 1988, Paradoxical growth-promoting effects induced by patterned infusions of somatostatin in female rats, Endocrinology 122: 2675–2682.PubMedCrossRefGoogle Scholar
  19. Clark, R. G., Jansson, J-O., Isaksson, O., and Robinson, I. C. A. F., 1985, Intravenous growth hormone: Growth responses to patterned infusions in hypophysectomized rats, J. Endocr. 104: 53–61.PubMedCrossRefGoogle Scholar
  20. de Nijs, H., Bouwman, T. R. M., and Eenink, M. J. D., 1988, Controlled peptide delivery using biodegradable microcapsule formulations, Pharm. Weekblad Sci. Ed. 10: 49.Google Scholar
  21. Desai, D. S., Tojo, K., Huang, Y. C., and Chien, Y. W., 1986, Transmucosal permeation of macromolecular drug: insulin, Pharm. Res. Suppl. 3: 55.Google Scholar
  22. Feng, G-S., Gray, P. W., Shepard, H. M., and Taylor, M. W., 1988, Anti-proliferative activity of a hybrid protein between interferon-gamma and tumor necrosis factor-ß, Science 241: 1501–1503.PubMedCrossRefGoogle Scholar
  23. Fiume, L., Busi, C., and Mattioli, A., 1982, Lactosaminated human serum albumin as hepatotropic drug carrier. Rate and uptake by mouse liver, FEBS Len. 146: 42–46.CrossRefGoogle Scholar
  24. Goldfarb, D. S., Gariépy, J., Schoolnik, G., and Kornberg, R. D., 1986, Synthetic peptides as nuclear localization signals, Nature 322: 641–644.PubMedCrossRefGoogle Scholar
  25. Greenfield, L., Johnson, V. G., and Youle, R. J., 1987, Mutations in diphtheria toxin separate binding from entry and amplify immunotoxin selectivity, Science 238: 536–539.PubMedCrossRefGoogle Scholar
  26. Heyman, M., Bonfils, A., Fortier, M., Crain-Denoyelle, A. M., Smets, P., and Desjeux, J. F., 1987, Intestinal absorption of RU 41740, an immunomodulating compound extracted from Klebsiella pneumoniae, across duodenal epithelium and Peyer’s patches of the rabbit, Int. J. Pharm. 37: 33–39.CrossRefGoogle Scholar
  27. Ho, D. H. W., Wang, C-Y., Lin, J-R., Brown, N., Newman, R. A., and Krakoff, I. H., 1988, Polyethylene glycol-L-asparaginase and L-asparaginase studies in rabbits, Drug Metab. Dispos. 16: 27–29.PubMedGoogle Scholar
  28. Katre, N. V., Knauf, M. J., and Laird, W. J., 1987, Chemical modification of recombinant interleukin 2 by polyethylene glycol increases its potency in the murine Meth A sarcoma model, Proc. Natl. Acad. Sci. USA 84: 1487–1491.PubMedCrossRefGoogle Scholar
  29. Katz, D. H., Hamaoka, T., and Benacerraf, B., 1972, Immunological tolerance in bone marrow-derived lymphocytes. I. Evidence for an intracellular mechanism of inactivation of haptenspecific precursors of antibody-forming cells, J. Exp. Med. 136: 1410–1429.Google Scholar
  30. Kelm, S., and Schauer, R., 1986, The galactose-recognizing system of rat peritoneal macrophages. Receptor-mediated binding and uptake of glycoproteins, Biol. Chem. 367: 989–998.Google Scholar
  31. Keogh-Bennett, J. M., Matthews, I. T., Beesley, J. S., Paul, F., Wilson, G., and Taylor, P. W., 1986, Intracellular delivery and release of fluorescein from an acid-labile transferrin conjugate, Biochem. Soc. Trans. 15: P444–445.Google Scholar
  32. Lee, W. Y., Sehon, A. H., and Akerblom, E., 1981, Suppression of reaginic antibodies with modified allergens. IV. Induction of suppressor T cells by conjugates with polyethylene glycol (PEG) and monomethoxy PEG with ovalbumin, Int. Arch. Allergy Appl. Immunol. 64: 100–114.PubMedCrossRefGoogle Scholar
  33. Levy, F., Muff, R., Dotti-Sigrist, M. A., and Fischer, J. A., 1989, Formation of neutralizing antibodies during intranasal synthetic salmon calcitonin treatment of Paget’s disease, J. Clin. Endocrinol. Metab. 67: 541–545.CrossRefGoogle Scholar
  34. Madiyalakan, R., Chowdhary, M. S., Rana, S. S., and Matta, K. L., 1986, Lysosomal-enzyme targeting: The phosphorylation of synthetic D-mannosyl saccharides by UDP-N-acetylglucosamine: Iysosomal-enzyme N-acetylglucosaminephosphotransferase from rat-liver microsomes and fibroblasts, Carbohydrate Res. 152: 183–194.CrossRefGoogle Scholar
  35. Mage, R. G., 1988, Designing antibodies for human therapies, Nature 333: 807–808.PubMedCrossRefGoogle Scholar
  36. Matuszewska, B., Liversidge, G. G., Ryan, F., Dent, J., and Smith, P. L., 1988, In vitro study of intestinal absorption and metabolism of 8-L-arginine vasopressin and its analogues, Im. J. Pharm. 46: 111–120.Google Scholar
  37. Melton, R. G., Wiblin, C. N., Baskerville, A., Foster, R. L., and Sherwood, R. F., 1987, Covalent linkage of carboxypeptidase G2 to soluble dextrans. II. In vivodistribution and fate of conjugates, Biochem. Pharmacol. 36: 113–121.PubMedCrossRefGoogle Scholar
  38. Meyer, B. R., Katzeff, H., Eschbach, J. C., Trimmer, J., Zacharias, S., and Rosen, S., 1988, Successful transdermal delivery of human insulin to rabbits with alloxan-induced diabetes mellitus, Clin. Res. 36: 367A.Google Scholar
  39. Miyata, K., Hirai, S., Yashiki, T., and Tomoda, K., 1980, Intestinal absorption of Serratiaprotease, J. Appl. Biochem. 2: 111–116.Google Scholar
  40. Miyata, K., Nakagawa, Y., Nakamura, M., Ito, T., Sugo, K., Fujita, T., and Tomoda, K., 1988, Altered properties of Serratia superoxide dismutase by chemical modification, Agric. Biol. Chem. 52: 1575–1581.CrossRefGoogle Scholar
  41. Moore, H. H., and Kelly, R. B., 1986, Re-routing of a secretory protein by fusion with human growth hormone sequences, Nature 321: 443–446.PubMedCrossRefGoogle Scholar
  42. Moore, J. A., Pletcher, S. A., and Ross, M. J., 1986, Absorption enhancement of growth hormone from the gastrointestinal tract of rats, Int. J. Pharm. 34: 35–43.CrossRefGoogle Scholar
  43. Murakami, T., Kishimoto, M., Kawakita, H., Higashi, Y., Yata, N., Amagase, H., Nojima, N., and Fuwa, T., 1987, Enhanced rectal and nasal absorption of human epidermal growth factor by the presence of absorption promoters in rats, J. Pharm. Sci. 76: 585.Google Scholar
  44. Murphy, J. R., 1987, Hybrid protein, U.S. Patent, 4: 675–382.Google Scholar
  45. Napper, D. H., and Netschey, A., 1971, Studies of the steric stabilisation of colloidal particles, J. Colloid Interface Sci. 37: 528–535.CrossRefGoogle Scholar
  46. Norde, W., 1984, Physicochemical aspects of the behaviour of biological components at solid/liquid interfaces, in: Microspheres and Drug Delivery: Pharmaceutical, Immunological and Medical Aspects( S. S. Davis, L. Ilium, J. G. McVie, and E. Tomlinson, eds.), pp. 25–37, Elsevier, Amsterdam.Google Scholar
  47. Offord, R. E., and Rose, K., 1987, New protein and polypeptide derived conjugates especially containing a reporter group or cytotoxic agent linked through specific N-containing groups, European Patent Applic., 87: 106–1131.Google Scholar
  48. O’Hagan, D. T., Palin, K. J., and Davis, S. S., 1987, Intestinal absorption of proteins and macromolecules and the immunological response, CRC Crit. Rev. Therap. Drug Carrier Systs. 4: 197–220.Google Scholar
  49. Okada, M., Matsushima, A., Katsuhata, A., Aoyama, T., Ando, T., and Inada, Y., 1985, Suppression of IgE antibody response against ovalbumin by the chemical conjugate of ovalbumin with a polyaspartic acid derivative, Int. Arch. Allergy Apply. Immunol. 76: 79–81.CrossRefGoogle Scholar
  50. Ottewill, R. H., 1977, Stability and instability in disperse systems, J. Colloid Interface Sci. 58: 357–373.CrossRefGoogle Scholar
  51. Rihovâ, B., Kopecek, J., Kopeckovâ-Rejmanovâ, P. Strohalm, J., Plocovâ, D., and Semorâdovâ, H., 1986, Bioaffinity therapy with antibodies and drugs bound to soluble synthetic polymers, J. Chromatogr. 376: 221–233.PubMedCrossRefGoogle Scholar
  52. Russell-Jones, G. J., and de Aizpurua, H. J., 1988, Vitamin B12: A novel carrier for orally presented antigens, Proc. Int. Symp. Control. Rel. Bioact. Mater. 15: 142–143.Google Scholar
  53. Saffran, M., Kumar, G. S., Savariar, C., Burnham, J. C., Williams, F., and Neckers, D. C., 1986, A new approach to the oral administration of insulin and other peptide drugs, Science 233: 1081–1084.PubMedCrossRefGoogle Scholar
  54. Sandoz, A. G., 1988, Peptide derivatives, Int. Patent Applic., WO 88 /02756.Google Scholar
  55. Scott, C. F., Lambert, J. M., Goldmacher, V. S., Blattler, W. A., Sobel, R., Schlossman, S. F., and Benacerraf, B., 1987, The pharmacokinetics and toxicity of murine monoclonal antibodies and of gelonin conjugates of these antibodies, Int. J. Immunopharm. 9: 211–225.CrossRefGoogle Scholar
  56. Segawa, A., Borges, M. S., Yokota, Y., Matsushima, A., Inada, Y., and Tada, T., 1981, Suppression of IgE antibody response by the fatty acid-modified antigen, Int. Arch. Allergy Appl. Immunol. 66: 189–199.PubMedCrossRefGoogle Scholar
  57. Siddiqui, O., and Chien, Y. W., 1987, Nonparenteral administration of peptide and protein drugs, CRC Crit. Rev. Therap. Drug Carrier Syst. 3: 195–208.Google Scholar
  58. Talmadge, J. E., 1986, Biological response modifiers: realising their potential in cancer therapeutics, Trends Pharmacol. Sci. 7: 277–281.CrossRefGoogle Scholar
  59. Told, N., Sumi, H., Sasaki, K., Boreisha, I., and Robbins, K. C., 1985, Transport of urokinase across the intestinal tract of normal human subjects with stimulation of synthesis and/or release of urokinase-type proteins, J. Clin. Invest. 75: 1212–1222.CrossRefGoogle Scholar
  60. Tomlinson, E., 1986, (Patho)physiology and the temporal and spatial aspects of drug delivery, in: Site-Specific Drug Delivery, (E. Tomlinson and S. S. Davis, eds.), pp. 1–27, Wiley, Chichester.Google Scholar
  61. Tomlinson, E., 1987a, Theory and practice of site-specific drug delivery, Adv. Drug Delivery Rev. 1: 87–198.CrossRefGoogle Scholar
  62. Tomlinson, E., 1987b, Biological opportunities for site-specific drug delivery using particulate carriers, in: Drug Delivery Systems: Fundamentals and Techniques(P. Johnson and G. Lloyd-Jones, eds.), Tomlinson, E., pp. 32–65, Ellis Horwood.Google Scholar
  63. Torchilin, V. P., Khaw, B. A., Klibanov, A. L., Slinkin, M. A., Haber, E., and Smimov, V. N., 1986, Modification of monoclonal antibodies by polymers possessing chelating properties, Bull. Exp. Biol. Med. 102: 946–948.CrossRefGoogle Scholar
  64. United States Office of Technological Assessment, 1988, U.S. investment in biotechnology, in: New Developments in Biotechnology, July 12, 1988, Washington, D.C.Google Scholar
  65. Urquhart, J., and Nicholls, K., 1985, Delivery systems and pharmacodynamics in new drug research and development, World Biotech. Rep. 2: 321–331.Google Scholar
  66. Vera, D. R., Krohn, K. A., Stadalnik, R. C., and Scheibe, P. O., 1984, Tc-99m-galactosylneoglycoalbumin: in vivocharacterisation of receptor-mediated binding to hepatocytes, Radiology 151: 191–199.PubMedGoogle Scholar
  67. Vitetta, E. S., Fulton, R. J., May, R. D., and Uhr, J. W., 1987, Redesigning nature’s poisons to create anti-tumor reagents, Science 238: 1098–1104.PubMedCrossRefGoogle Scholar
  68. Von Heijne, G., 1985, Structural and thermodynamic aspects of the transfer of proteins into and across membranes, Curr. Topics Transport 24: 151–179.CrossRefGoogle Scholar
  69. Warshaw, A. L., Walker, W. A., and Isselbacher, K. J., 1974, Protein uptake by the intestine, Gastroenterology 66: 987–992.PubMedGoogle Scholar
  70. Wileman, T. E., Foster, R. L., and Elliott, P. N. C., 1986, Soluble asparaginase-dextran conjugates show increased circulatory persistence and lowered antigen reactivity, J. Pharm. Pharmacol. 38: 264–271.PubMedCrossRefGoogle Scholar
  71. Wilson, G., Eidelberg, M., and Michalak, V., 1979, Selective hepatic uptake of synthetic glycoproteins. Mannosaminated ribonuclease A dimer and serum albumin, J. Gen. Physiol. 74: 495–509.PubMedCrossRefGoogle Scholar
  72. Yoshikawa, H., Takada, K., Muranishi, S., Satoh, Y-I, and Naruse, N., 1984, A method to potentiate enteral absorption of interferon and selective delivery into lymphatics. J. Pharmacobio-Dyn. 7: 59–62.PubMedCrossRefGoogle Scholar
  73. Zimmermann, R., and Meyer, D. I., 1986, 1986: A year of new insights into how proteins cross membranes, Trends Biochem. Sci. 11: 512–515.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • E. Tomlinson
    • 1
  1. 1.Advanced Drug Delivery ResearchCiba-Geigy PharmaceuticalsHorsham, West SussexEngland

Personalised recommendations