Receptor-Based Design of Dihydrofolate Reductase Inhibitors

  • Lee F. Kuyper
Part of the New Horizons in Therapeutics book series (NHTH)


The enzyme dihydrofolate reductase (DHFR) has become a well-established target for drug action since it was identified about 30 years ago. Clinically useful drugs whose activity stems from DHFR inhibition include the antibacterial agent trimethoprim (TMP, 1) (see Finland et al., 1982), and methotrexate (MTX, 2) (see Roth and Cheng, 1982), a compound used in the treatment of certain forms of cancer.


Dihydrofolate Reductase Nuclear Magnetic Resonance Study Molecular Mechanic Modeling Relative Binding Energy DHFR Inhibitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antonjuk, D. J., Birdsall, H. T., Cheung, A., Clore, G. M., Feeney, J., Gronenborn, A., Roberts, G. C. K., and Tran, T. Q., 1984, AHNMR study of the role of the glutamate moiety in the binding of methotrexate to Lactobacillus casei dihydrofolate, Br. J. Pharm. 81: 309–315.Google Scholar
  2. Appleman, J. R., Prendergast, N., Delcamp, T. J., Freisheim, J. H., and Blakley, R. L., 1988, Kinetics of the formation and isomerization of methotrexate complexes of recombinant human dihydrofolate reductase, J. Biol. Chem. 263: 10304–10313.PubMedGoogle Scholar
  3. Baccanari, D. P., Stone, D., and Kuyper, L., 1981, Effect of a single amino acid substitution on Escherichia coli dihydrofolate reductase catalysis and ligand binding, J. Biol. Chem. 256: 1738–1747.PubMedGoogle Scholar
  4. Baccanari, D. P., Daluge, S., and King, R. W., 1982, Inhibition of dihydrofolate reductase: Effect of reduced nicotinamide adenine dinucleotide phosphate on the selectivity and affinity of diaminobenzylpyrimidines, Biochemistry 21: 5068–5075.PubMedCrossRefGoogle Scholar
  5. Bash, P. A., Singh, U. C., Brown, F. K., Langridge, R., and Kollman, P. A., 1987, Calculation of the relative change in binding free energy of a protein—inhibition complex, Science 235: 574–576.PubMedCrossRefGoogle Scholar
  6. Beddell, C. R., 1984, Dihydrofolate reductase: Its structure, function, and binding properties, in: X-Ray Crystallography and Drug Action, ( A. S. Horn and C. J. DeRanter, eds.), pp. 169–193, Oxford University Press, New York.Google Scholar
  7. Bevan, A. W. Roberts, G. C. K., Feeney, J., and Kuyper, L. F., 1985, H and 15N NMR studies of protonation and hydrogen-bonding in the binding of trimethoprim of dihydrofolate reductase, Eur. Biophys. J. 11:211–218.Google Scholar
  8. Birdsall, B., Roberts, G. C. K., Feeney, J., Dann, J. G., and Burgen, A. S. V., 1983, Trimethoprim binding to bacterial and mammalian dihydrofolate reductase: A comparison by proton and carbon-13 nuclear magnetic resonance, Biochemistry 22: 5597–5604.PubMedCrossRefGoogle Scholar
  9. Bitar, K. G., Blankenship, D. T., Walsh, K. A., Dunlap, R. B., Reddy, A. V., and Freisheim, J. H., 1977, Amino acid sequence of dihydrofolate reductase from an amethopterin-resistant strain of Lactobacillus casei, FEBS Lett. 80: 119–122.PubMedCrossRefGoogle Scholar
  10. Blakley, R. L., 1984, Dihydrofolate Reductase, in: Folates and Pterins, Vol. 1 ( R. L. Blakley and S. J. Benkovic, eds.), pp. 191–253, Wiley, New York.Google Scholar
  11. Blakley, R. L., and Benkovic, S. J. (eds.), 1984, Folates and Pterins, Vol. 1, Wiley, New York.Google Scholar
  12. Blaney, J. M., Weiner, P. K., Dearing, A., Kollman, P. A., Jorgensen, E. C., Oatley, S. J., Burridge, J. M., and Blake, C. C. F., 1982, Molecular mechanics simulation of protein-ligand interactions: Binding of thyroid hormone analogues to prealbumin, J. Am. Chem. Soc. 104: 6424–6434.CrossRefGoogle Scholar
  13. Blaney, J. M., Hansch, C., Silipo, C., and Vittoria, A., 1984, Structure—activity relationships of dihydrofolate reductase inhibitors, Chem. Rev. 84: 333–407.CrossRefGoogle Scholar
  14. Bolin, J. T., Filman, D. J., Matthews, D. A., Hamlin, R. C., and Kraut, J., 1982, Crystal structures of Escherichia coil and Lactobacillus casei dihydrofolate reductase refined at 1.7A resolution. I. General features and binding of methotrexate, J. Biol. Chem. 257: 13650–13662.PubMedGoogle Scholar
  15. Champness, J. N., Kuyper, L. F., and Beddell, C. R., 1986a, Interaction between dihydrofolate reductase and certain inhibitors, in: Topics in Molecular Pharmacology, Vol. 3 ( A. S. V. Burgen, G. C. K. Roberts, and M. S. Tute, eds.), pp. 335–362, Elsevier, New York.Google Scholar
  16. Champness, J. N., Stammers, D. K., and Beddell, C. R., 1986b, Crystallographic investigation of the cooperative interaction between trimethoprim, reduced cofactor and dihydrofolate reductase, FEBS Lett. 199: 61–67.PubMedCrossRefGoogle Scholar
  17. Charlton, P. A., Young, D. W., Birdsall, B., Feeney, J., and Roberts, G. C. K., 1985. Stereochemistry of reduction of the vitamin folic acid by dihydrofolate reductase, J. Chem. Soc. Perkin Trans., 1349, 1353.Google Scholar
  18. Cheung, H. T. A., Searle, M. S., Feeney, J., Birdsall, B., Roberts, G. C. K., Kompis, I., and Hammond, S. J., 1986, Trimethoprim binding to Lactobacillus casei dihydrofolate reductase: AC NMR study using selectively 13C-enriched trimethoprim, Biochemistry 25: 1925–1931.PubMedCrossRefGoogle Scholar
  19. Cocco, L., Roth, B., Temple, C., Jr., Montgomery, J. A., London, R. E., and Blakley, R. L., 1983, Protonated state of methotrexate, trimethoprim, and pyrimethamine bound to dihydrofolate reductase, Arch. Biochem. Biophys. 226: 567–577.PubMedCrossRefGoogle Scholar
  20. Filman, D. J., Bolin, J. T., Matthews, D. A., and Kraut, J., 1982, Crystal structures of Escherichia coli and Lactobacillus casei dihydrofolate reductase refined at 1.7A resolution. II. Environment of bound NADPH and implications for catalysis, J. Biol. Chem. 257: 13663–13672.PubMedGoogle Scholar
  21. Finland, M., Kass, E. H., and R. Platt, eds., 1982, Trimethoprim–sulfamethoxazole revisited, Rev. Infect. Dis. 4:185–618.Google Scholar
  22. Freisheim, J. H., and Matthews, D. A., 1984, The comparative biochemistry of dihydrofolate reductase, in: Folate Antagonists as Therapeutic Agents, Vol. 1 ( F. M. Sirotnak, J. J. Burchall, W. B. Ensminger, and J. A. Montgomery, eds.), pp. 69–131, Academic Press, New York.Google Scholar
  23. Hine, J., and Mookerjee, P. K., 1975, The intrinsic hydrophilic character of organic compounds. Correlations in terms of structural contribution, Erro Hyperlink reference not valid.. Chem. 40: 292–298.Google Scholar
  24. Hitchings, G. H., 1983, Functions of tetrahydrofolate and the role of dihydrofolate reductase in cellular metabolism, in: Handbook of Experimental Pharmacology, Vol. 64 ( G. H. Hitchings, ed.), pp. 11–23, Springer-Verlag, Berlin.Google Scholar
  25. Hood, K., and Roberts, G. C. K., 1978, Ultraviolet difference-spectroscopic studies of substrate and inhibitor binding to Lactobacillus casei dihydrofolate reductase, Biochem. J. 171: 357–366.PubMedGoogle Scholar
  26. Howell, E. E., Villafranca, J. E., Warren, M. S., Oatley, S. J., and Kraut, J., 1986, Functional role of aspartic acid-27 in dihydrofolate reductase revealed by mutagenesis, Science 231: 1123–1128.PubMedCrossRefGoogle Scholar
  27. Kompis, I., and Then, R. L., 1984, Rationally designed brodimoprim analogues: Synthesis and biological activities, Eur. J. Med. Chem. Chim. Ther. 19: 529–534.Google Scholar
  28. Kraut, J., and Matthews, D. A., 1987, Dihydrofolate reductase, in: Biological Macromolecules and Assemblies, Vol. III ( F. Jurnak and A. McPherson, eds.), pp. 1–71, Wiley, New York.Google Scholar
  29. Kumar, A. A., Blankenship, D. T., Kaufman, B. T., and Freisheim, J. H., 1980, Primary structure of chicken liver dihydrofolate reductase, Biochemistry 19: 667–678.PubMedCrossRefGoogle Scholar
  30. Kuyper, L. F., 1985, Molecular mechanics modeling of dihydrofolate reductase-inhibitor complexes: Correlation between calculated energy and observed affinity, Abstracts of Papers, 189th ACS National Meeting, Miami Beach, FL, April 28-May 3, Washington, DC, Abstr. MEDI 88.Google Scholar
  31. Kuyper, L. F., Roth, B., Baccanari, D. P., Ferone, R., Beddell, C. R., Champness, J. N., Stam- mers, D. K., Dann, J. G., Norrington, F. E., Baker, D. J., and Goodford, P. J., 1985, Receptor- based design of dihydrofolate reductase inhibitors: Comparison of crystallographically determined enzyme binding with enzyme affinity in a series of carboxy-substituted trimethoprim analogues, J. Med. Chem. 28: 303–311.PubMedCrossRefGoogle Scholar
  32. Masters, J. N., and Attardi, G., 1983, The nucleotide sequence of the cDNA coding for the human dihydrofolic acid reductase, Gene 21: 59–63.PubMedCrossRefGoogle Scholar
  33. Matthews, D. A., Alden, R. A., Bolin, J. T., Freer, S. T., Hamlin, R., Xuong, N., Kraut, J., Poe, M., Williams, M., and Hoogsteen, K., 1977, Dihydrofolate reductase: X-ray structure of the binary complex with methotrexate, Science 197: 452–455.PubMedCrossRefGoogle Scholar
  34. Matthews, D. A., Bolin, J. T., Burridge, J. M., Filman, D. J., Volz, K. W., Kaufman, B. T., Beddell, C. R., Champness, J. N., Stammers, D. K., and Kraut, J., 1985a, Refined crystal structures of Escherichia coli and chicken liver dihydrofolate reductase containing bound trimethoprim, J. Biol. Chem. 260: 381–391.PubMedGoogle Scholar
  35. Matthews, D. A., Bolin, J. T., Burridge, J. M., Filman, D. J., Volz, K. W., and Kraut, J., 1985b, Dihydrofolate reductase. The stereochemistry of inhibitor selectivity, J. Biol. Chem. 260: 392–399.PubMedGoogle Scholar
  36. Matthews, D. A., Smith, S. L., Baccanari, D. P., Burchall, J. J., Oatley, S. J., and Kraut, J., 1986, Crystal structure of a novel trimethoprim-resistant dihydrofolate reductase specified in Escherichia coli by R-plasmid R67, Biochemistry 25: 4194–4204.PubMedCrossRefGoogle Scholar
  37. Oefner, C., D’arcy, A., and Winkler, F. K., 1988, Crystal structure of human dihydrofolate reductase complexed with folate, Eur. J. Biochem. 174: 377–385.PubMedCrossRefGoogle Scholar
  38. Ollis, W. D., Stoddart, J. F., and Sutherland, I. O., 1974, The conformational behaviour of some medium-sized ring systems, Tetrahedron 30: 1903–1921.CrossRefGoogle Scholar
  39. Pettitt, M., and Karplus, M., 1986, Interaction energies: their role in drug design, in: Topics in Molecular Pharmacology, Vol. 3 ( A. S. V. Burgen, G. C. K. Roberts, and M. S. Tute, eds.), pp. 75–113, Elsevier, New York.Google Scholar
  40. Phillips, T., and Bryan, R. F., 1969, X-ray crystal structures of the antimalarial agents daraprim and trimethoprim, Acta Crystallogr. Sect. A A25: S200.Google Scholar
  41. Piper, J. R., Montgomery, J. A., Sirotnak, F. M., and Chello, P. L., 1982, Syntheses of a-and y-substituted amides, peptides, and esters of methotrexate and their evaluation as inhibitors of folate metabolism, J. Med. Chem. 25: 182–187.PubMedCrossRefGoogle Scholar
  42. Prendergast, N. J., Delcamp, T. J., Smith, P. L., and Freisheim, J. H., 1988, Expression and sitedirected mutagenesis of human dihydrofolate reductase, Biochemistry 27:3664–3671.PubMedCrossRefGoogle Scholar
  43. Richardson, J. S., 1981, The anatomy and taxonomy of protein structure, Adv. Prot. Chem. 34: 167–339.CrossRefGoogle Scholar
  44. Roth, B., 1983, Selective inhibitors of bacterial dihydrofolate reductase: Structure-activity relationships, in: Handbook of Experimental Pharmacology, Vol. 64 ( G. H. Hitchings, ed.), pp. 107–127, Springer-Verlag, Berlin.Google Scholar
  45. Roth, B., and Cheng, C. C., 1982, Recent progress in the medicinal chemistry of 2,4-diaminopyrimidines, in: Progress in Medicinal Chemistry, Vol. 19 ( C. P. Ellis and G. B. West, eds.), pp. 269–331, Elsevier Biomedical Press, Amsterdam.Google Scholar
  46. Roth, B., Aig, E., Lane, K., and Rauckman, B. S., 1980, Diamino-5-benzylpyrimidines as antibacterial agents. 4. 6-Substituted trimethoprim derivatives from phenolic Mannich intermediates. Application to the synthesis of trimethoprim and 3,5-dialkylbenzyl analogues, J. Med. Chem. 23: 535–541.PubMedCrossRefGoogle Scholar
  47. Searle, M. S., Forster, M. J., Birdsall, B., Roberts, G. C. K., Feeney, J., Cheung, H. T. A., Kompis, I., and Geddes, A. J., 1988, Dynamics of trimethoprim bound to dihydrofolate reductase, Proc. Natl. Acad. Sci. USA 85: 3787–3791.PubMedCrossRefGoogle Scholar
  48. Singh, U. C., 1988, Probing the salt bridge in the dihydrofolate reductase—methotrexate complex by using the coordinate-coupled free-energy perturbation method, Proc. Natl. Acad. Sci. USA 88: 4280–4284.CrossRefGoogle Scholar
  49. Stammers, D. K., Champness, J. N., Beddell, C. R., Dann, J. G., Eliopoulos, E., Geddes, A. J., Ogg, D., and North, A. C., 1987, The structure of mouse L1210 dihydrofolate reductase—drug complexes and the construction of a model of human enzyme, FEBS Lett. 218: 178–184.PubMedCrossRefGoogle Scholar
  50. Stone, D., Paterson, S. J., Raper, J. H., and Phillips, A. W., 1979, The amino acid sequence of dihydrofolate reductase from the mouse lymphoma L1210, J. Biol. Chem. 254: 480–488.PubMedGoogle Scholar
  51. Subramanian, S., and Kaufman, B. T., 1978, Interaction of methotrexate, folates and pyridine nucleotides with dihydrofolate reductase: Calorimetric and spectroscopic binding studies, Proc. Natl. Acad. Sci. USA 75: 3201–3205.PubMedCrossRefGoogle Scholar
  52. Villafranca, J. E., Howell, E. E., Voet, D. H., Strobel, M. S., Ogden, R. C., Abelson, J. N., and Kraut, J., 1983, Directed mutagenesis of dihydrofolate reductase, Science 222: 782–788.PubMedCrossRefGoogle Scholar
  53. Volz, K. W., Matthews, D. A., Alden, R. A., Freer, S. T., Hansch, C., Kaufman, B. T., and Kraut, J., 1982, Crystal structure of avian dihydrofolate reductase containing phenyltriazine and NADPH, J. Biol. Chem. 257: 2528–2536.PubMedGoogle Scholar
  54. Weiner, P. K., and Kollman, P. A., 1981, AMBER: Assisted model building with energy refinement. A general program for modeling molecules and their interactions, J. Comp. Chem. 2: 287–303.CrossRefGoogle Scholar
  55. Wong, C. F., and McCammon, J. A., 1986, Dynamics and design of enzymes and inhibitors, J. Am. Chem. Soc. 108: 3830–3832.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Lee F. Kuyper
    • 1
  1. 1.Wellcome Research LaboratoriesResearch Triangle ParkUSA

Personalised recommendations