Chemical Approaches to Protein Engineering

  • Robin E. Offord
Part of the New Horizons in Therapeutics book series (NHTH)


Other contributions to this Volume provide an excellent account of the current stage of protein engineering using the technology of recombinant DNA. This approach has led to dramatic advances in the last 5 years or so. For the moment, it is limited to the same kinds of changes, as is the natural process of protein evolution, which it mimics. The same l-amino acid residues are involved, and once again all must be linked by the peptide bond. Chemical methods presently have something additional to offer, in that they permit the site-specific introduction into the covalent structures of proteins of noncoded amino acids (l or d), the insertion of molecules that are not, strictly speaking, amino acids, or even the insertion of molecules that are quite definitely not amino acids, and that are linked by something other than the peptide bond.


Peptide Bond Human Insulin Disulfide Bridge Peptide Chain Chemical Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acharya, A. S., Cho, Y. J., and Iyer, K. S., 1987, Staphylococcus aureus V8-protease catalyzed segment exchange reaction of alpha-chain of hemoglobin S: A semisynthetic approach for the preparation of variants of alpha-chain, Prog. Clin. Biol. Res.240: 3–19.PubMedGoogle Scholar
  2. Ando, S., McPhie, P., and Chaiken, I. M., 1987, Sequence redesign and the assembly mechanism of the oxytocin/bovine neurophysin I biosynthetic precursor, J. Biol. Chem.262 (27): 12962–12969.PubMedGoogle Scholar
  3. Ando, S., Murthy, S. M., Eipper, B. A., and Chaiken, I. M., 1988, Effect of neurophysin on enzymatic maturation of oxytocin from its precursor, J. Biol. Chem.263 (2): 769–775.PubMedGoogle Scholar
  4. Baumhueter, S., Wallace, C. J. A., Proudfoot, A. E. I., Bron, C., and Corradin, G., 1987, Murine T-cell antigenic determinants identified within a limited region of the horse cytochrome cmolecule, Eur. J. Immunol.17: 651–656.CrossRefGoogle Scholar
  5. Canova-Davies, E., and Carpenter, F. H. C., 1980, Specific activation of the arginine carboxyl group of the B-chain of bovine des-octapeptide-(B23–30)-insulin, in: Insulin( D. W. Brandenburg, and A. Willmer, eds.), Walter de Gruyter, Berlin, New York pp. 107–115.Google Scholar
  6. Cara, J. F., Nakagawa, S. H., and Tager, H. S., 1988, Structural determinants of ligand recognition by Type I insulin-like growth factor receptors: Use of semisynthetic insulin analog probes, Endocrinology 122 (6): 2881–2887.PubMedCrossRefGoogle Scholar
  7. Chaiken, I. M., 1981, Semisynthetic peptides and proteins, Cri:. Rev. Biochem.11: 255–301.CrossRefGoogle Scholar
  8. Chang, J. Y., Alkan, S. S., Hilschmann, N., and Braun, D. G., 1985, Thrombin specificity. Selective cleavage of antibody light chains at the joints of variable with joining regions and joining with constant regions, Eur. J. Biochem.151: 225–230.PubMedCrossRefGoogle Scholar
  9. Collawn, J. F., Wallace, C. J. A., Proudfoot, A. E. I., and Paterson, Y., 1988, Monoclonal antibodies as probes of conformational changes in protein-engineered cytochrome c, J. Biol. Chem.263: 8625–8634.PubMedGoogle Scholar
  10. Corradin, G., Wallace, C. J. A., Proudfoot, A. E. I., Verdini, A. S., and Baumhueter, S., 1986, Use of natural and synthetic peptides to determine the fine specificity of cytochrome c specific T cell clones, in: Protides of the Biological Fluids, XXXIV( H. Peeters, ed.), Pergamon, Oxford pp. 145–147.Google Scholar
  11. Davies, J. G., and Offord, R. E., 1985, The preparation of tritiated insulin specifically labelled by semisynthesis at glycine-Al, Biochem. J. 231:389–392.PubMedGoogle Scholar
  12. Davies, J. G., Muir, A. V., and Offord, R. E., 1986, Identification of some cleavage sites of insulin by insulin proteinase, Biochem. J.240: 609–612.PubMedGoogle Scholar
  13. Davies, J. G., Rose, K., Bradshaw, C. G., and Offord, R. E., 1987, Enzymatic semisynthesis of insulin specifically labelled with tritium at position B-30, Protein Engineering 1: 407–411.PubMedCrossRefGoogle Scholar
  14. Davies, J. G., Muir, A. V., Rose, K., and Offord, R. E., 1988, Identification of radioactive insulin fragments liberated by insulin proteinase during the degradation of semisynthetic [[3H]GlyA’]insulin and [[3H]PheB1]insulin, Biochem. J.249: 209–214.PubMedGoogle Scholar
  15. Dixon, H. B. F., and Fields, R., 1972, [33] Specific modification of NH2-terminal residues by transamnination, Methods Enzymol. 25:409–419.CrossRefGoogle Scholar
  16. Duckworth, W. C., and Kitabchi, A. E., 1981, Insulin metabolism and degradation, Endocrinol. Rev.2: 210–233.CrossRefGoogle Scholar
  17. Gavish, M., Zakut, R., Wilchek, M., and Givol, D., 1978, Preparation of a semisynthetic antibody, Biochemistry 17: 1345–1351.PubMedCrossRefGoogle Scholar
  18. Glass, J., and Pelzig, M., 1974, Enzymes as reagents in peptide synthesis. Enzyme-labile protection for carboxyl groups, Proc. Natl. Acad. Sci. USA 74: 2739–2741.CrossRefGoogle Scholar
  19. Hagenmaier, H., Ohms, J. P., Jahns, J., and Anfinsen, C. B., 1978, Studies on the semisynthesis of myoglobin from natural fragments, in: Semisynthetic Peptides and Proteins( R. E. Offord and C. Di Bello, eds.), Academic Press, London pp. 23–35.Google Scholar
  20. Halban, P. A., and Offord, R. E., 1975, The preparation of a semisynthetic tritiated insulin with a specific radioactivity of up to 20 curies per millimole, Biochem. J.151: 219–225.PubMedGoogle Scholar
  21. Haneda, M., Kobayashi, M., Maegawa, H., Watanabe, B., Takata, Y., Ishibashi, O., Shigeta, A., and Inouye, K., 1985, Decreased biologic activity and degradation of human [SerB24]-insulin, a second mutant insulin, Diabetes 34: 568–573.PubMedCrossRefGoogle Scholar
  22. Harris, D. E., and Offord, R. E., 1977, A functioning complex between tryptic fragments of cytochrome c, Biochem. J.161: 21–25.PubMedGoogle Scholar
  23. Hefta, S. A., Lyle, S. B., Busch, M. R., Harris, D. E., Matthew, J. B., and Gurd, F. R., 1988, Sitespecific semisynthetic variant of human hemoglobin, Proc. Natl. Acad. Sci. USA 85: 709–713.PubMedCrossRefGoogle Scholar
  24. Hunter, M. L., and Ludwig, M. J., 1962, The reaction of imidoesters with proteins and related small molecules, J. Am. Chem. Soc.84: 3491–3504.CrossRefGoogle Scholar
  25. Inouye, K., Watanabe, K., Morihara, K., Tochino, T., Kanaya, T., Emura, J., and Sakakibara, S., 1979, Enzyme-assisted semisynthesis of human insulin, J. Am. Chem. Soc.101: 751–752.CrossRefGoogle Scholar
  26. Jones, R. M. L., and Offord, R. E., 1982, The proteinase-catalysed synthesis of peptide hydrazides, Biochem. J.203: 125–129.PubMedGoogle Scholar
  27. Jones, R. M. L., Rose, K., and Offord, R. E., 1987, Semisynthetic human [[3H2]Phe’]proinsulin, Biochem. J.247: 785–788.PubMedGoogle Scholar
  28. Kaiser, E. T., and Lawrence, D. S., 1984, Chemical mutation of enzyme active sites, Science 226: 505–511.PubMedCrossRefGoogle Scholar
  29. Kihara, H., Ishimaru, K., and Ohno, M., 1981, Cleavage of Trimeresurusflavoridisphospholipase A2 with cyanogen bromide: Sequence of the short peptide fragment and formation of a noncovalently bonded complex from the fragments, J. Biochem.90: 363–370.PubMedGoogle Scholar
  30. Knoblauch, H., Röterjans, H., Bloemhoff, W., and Kerling, K. E. T., 1988, 15N- and ‘H-NMR investigations of the active-site amino acids in semisynthetic RNase S’ and RNase A, Eur. J. Biochem. 172:485–497.CrossRefGoogle Scholar
  31. Kobayashi, M., Ohgaku, S., Iwasaki, M., Maegawa, H., Shigeta, Y., and Inouye, K., 1982, Supernormal insulin: [D-PheB24]-insulin with increased affinity for insulin receptors, Biochem. Biophys. Res. Commun.107: 329–336.PubMedCrossRefGoogle Scholar
  32. Kobayashi, M., Haneda, M., Maegawa, H., Watanabe, N., Takada, Y., Shigeta, Y., and Inouye, K., 1984, Receptor binding and biological activity of [SerB24]-insulin, an abnormal mutant Insulin, Biochem. Biophys. Res. Commun.119: 49–57.PubMedCrossRefGoogle Scholar
  33. Kobayashi, M., Takata, Y., Ishibashi, O., Sasaoka, T., Iwasaki, M., Shigeta, Y., and Inouye, K., 1986, Receptor binding and negative cooperativity of a mutant insulin [LeuA3]-insulin, Biochem. Biophys. Res. Commun.137: 250–257.PubMedCrossRefGoogle Scholar
  34. Kubiak, T., Whitney, D. B., and Merrifield, R. B., 1987, Synthetic peptides VH(27–68) and VH(1668) of the myeloma immunoglobulin M603 heavy chain and their association with the natural light chain to form an antigen binding site, Biochemistry 26: 7849–7855.PubMedCrossRefGoogle Scholar
  35. Kullmann, W., 1987, Enzymatic Peptide Synthesis, 140 pp. CRC Press, Boca Raton, FL.Google Scholar
  36. Laskowski, M., Jr., 1978, The use of proteolytic enzymes for the synthesis of specific peptide bonds in globular proteins, in: Semisynthetic Peptides and Proteins( R. E. Offord and C. Di Bello, eds.), Academic Press, London pp. 255–262.Google Scholar
  37. Leary, T. R., and Laskowski, M., Jr., 1973, Enzymatic replacement of Arg63 by Trp63 in the reactive site of soybean trypsin inhibitor (Kunitz)—An intentional change from tryptic to chymotryptic specificity, Fed. Proc.32: 465.Google Scholar
  38. Li, C. H., Blaker, J., and Hayashida, T., 1978, Human somatotropin: Semisynthesis of the hormone by noncovalent interaction of the NH2-terminal fragment with synthetic analogs of the COOHterminal fragment, Biochem. Biophys. Res. Commun.82: 217–222.PubMedCrossRefGoogle Scholar
  39. Ludwig, M. L., and Byrne, R., 1962, Reversible blocking of protein amino groups by the acetimidyl group, J. Am. Chem. Soc.84: 4160–4162.CrossRefGoogle Scholar
  40. Mahrenholz, A. M., Flanders, K. C., Hoosein, N. M., Gurd, F. R-N., and Gurd, R. S., 1987, Semisynthetic D-His’,NE-acetimidoglucagon: Structure–function relationships, Arch. Biochem. Biophys.257: 379–386.PubMedCrossRefGoogle Scholar
  41. Markussen, J., 1980, Process for preparing insulin esters, Danish Patent Application 574/80. Means, G. E., and Feeney, R. E., 1971, Chemical Modification of Proteins, 254 pp., Holden-Day, San Francisco.Google Scholar
  42. Muir, A. V., Offord, R. E., and Davies, J. G., 1986, The identification of a degradation of insulin by insulin proteinase, Biochem. J.237: 631–637.PubMedGoogle Scholar
  43. Nakagawa, S. H., and Tager, H. S., 1986, Role of the phenylalanine B25 side chain in directing insulin interaction with its receptor, J. Biol. Chem.261: 7332–7341.PubMedGoogle Scholar
  44. Neet, K. E., and Koshland, D. E., 1966, The conversion of serine at the active site of subtilisin to cysteine: A “chemical mutation,” Proc. Natl. Acad. Sci. USA 56: 1606–1611.PubMedCrossRefGoogle Scholar
  45. Offord, R. E., 1966, Electrophoretic mobilities of peptides on paper and their use in the determination of amide groups, Nature 211: 591–593.PubMedCrossRefGoogle Scholar
  46. Offord, R. E., 1980, Semisynthetic Proteins, 235 pp., Wiley, Chichester, New York.Google Scholar
  47. Offord, R. E., 1987, Review—Protein engineering by chemical means? Protein Engineering 1: 151–157.PubMedCrossRefGoogle Scholar
  48. Offord, R. E., and Rose, K., 1986a, Press-stud protein conjugates, in: Protides of the Biological Fluids XXXIV( H. Peeters, ed.), pp. 35–38, Pergamon Press, Oxford.Google Scholar
  49. Offord, R. E., and Rose, K., 1986b, Polypeptide and protein derivatives and process for their preparation, G.B. Patent Application No. 8721875.Google Scholar
  50. Offord, R. E., Pochon, S., and Rose, K., 1986, Press-stud protein conjugates, in: Peptides 1986 (D. Theodoropoulos, ed.), pp. 279–281, de Gruyter, Berlin.Google Scholar
  51. Offord, R. E., and Rose, K., 1987, Polypeptide and protein derivatives and process for their preparation, U.S. Patent Application Ser. No. 043530.Google Scholar
  52. Polgar, L., and Bender, M. L., 1966, Thiol-substitution, J. Am. Chem. Soc.88: 3153–3154.CrossRefGoogle Scholar
  53. Proudfoot, A. E. I., and Wallace, C. J. A., 1987, Semisynthesis of cytochrome cand analogues, Biochem. J.248: 965–967.PubMedGoogle Scholar
  54. Proudfoot, A. E. I., Wallace, C. J. A., Harris, D. E., and Offord, R. E., 1986, A new non-covalent complex of semisynthetically modified tryptic fragments of cytochrome c, Biochem. J.239: 333–337.PubMedGoogle Scholar
  55. Richards, F. M., 1958, Ribonuclease S, Proc. Natl. Acad. Sci. USA 44: 162–166.PubMedCrossRefGoogle Scholar
  56. Rose, K., Pochon, S., and Offord, R. E., 1984, 18O-labelled human insulin: Semisynthesis and mass-spectrometric analysis, in: Peptides 1984(U. Ragnarson, ed.) Almquist and Wiksell International, Stockholm.Google Scholar
  57. Rose, K., Herrero, C., Proudfoot, A. E. I., Wallace, C. J. A., and Offord, R. E., 1987, Enzyme-assisted semisynthesis of polypeptide active esters for subsequent spontaneous coupling, pp. 219–220, W. de Gruyter, Berlin. in: Peptides 1986(D. Theodoropoulos, ed.), pp. 219–222.Google Scholar
  58. Rose, K., Herrero, C., Proudfoot, A. E. I., Offord, R. E., and Wallace, C. J. A., 1988a, Enzyme- assisted semisynthesis of polypeptide active esters and their use, Biochem. J.249: 83–88.Google Scholar
  59. Rose, K., Jones, R. M. K., Sundaram, G., and Offord, R. E., 1988b, Attachment of linker groups to carboxyl termini using enzyme-assisted reverse proteolysis, pp. 272–276. in: Proc. 20th Eur. Pep. Symp. (G. Jung, ed.).Google Scholar
  60. Rose, K., Savoy, L. A., Muir, A. V., Davies, J. G., Offord, R. E., and Turcatti, G., 1988e, Insulin proteinase liberates from glucagon a fragment known to zhave enhanced activity against Ca2 + + Mgz+-dependent ATPase, Biochem. J.256: 847–851.Google Scholar
  61. Rosenberg, S., and Terry, W. D., 1977, Passive immunotherapy of cancer in animals and man, Adv. Cancer Res.25: 323–388.PubMedCrossRefGoogle Scholar
  62. Savoy, L-A., Jones, R. M. L., Pochon, S., Davies, J. G., Muir, A. V., Offord, R. E., and Rose, K., 1988, Identification by fast atom bombardment mass spectrometry of insulin fragments produced by insulin proteinase, Biochem. J.249: 215–222.PubMedGoogle Scholar
  63. Schwartz, G. P., Thompson Burke, G., and Katsoyannis, P. G., 1987, A superactive insulin: [B10aspartic acid]insulin(human), Proc. Natl. Acad. Sci. USA 84: 6408–6411.PubMedCrossRefGoogle Scholar
  64. Sealock, R. W., and Laskowski, M. Jr., 1969, Enzymatic replacement of the arginyl by a lysyl residue in the reactive site of soybean trypsin inhibitor, Biochemistry 8: 3703–3710.PubMedCrossRefGoogle Scholar
  65. Seetharam, R., and Seetharama Acharya, A. 1986, Synthetic potential of Staphylococcus aureusV8-protease: An approach toward semisynthesis of covalent analogs of a-chain of hemoglobin S, J. Cell. Biochem.30: 87–99.PubMedCrossRefGoogle Scholar
  66. Sheppard, R. C., 1980, Partial synthesis of peptides and proteins, in: The peptides( E. Gross and S. Maienhofer, eds.), Vol. 2, pp. 441–484. Academic Press, London.Google Scholar
  67. Shoelson, S. E., Polonsky, K. S., Zeidler, A., Rubenstein, A. H., and Tager, H. S., 1983, Identification of a mutant human insulin predicted to contain a serine-for-phenylalanine substitution, Proc. Natl. Acad. Sci. USA 80: 7390–7394.PubMedCrossRefGoogle Scholar
  68. Shoelson, S. E., Polonsky, K. S., Zeidler, A., Rubinstein, A. H., and Tager, H. S., 1984, Human insulin B24 (Phe -* Ser). Secretion and metabolic clearance of the abnormal insulin in man and in a dog model, J. Clin. Invest.73: 1351–1358.PubMedCrossRefGoogle Scholar
  69. Slaby, I., and Holmgren, A., 1975, Reconstitution of Escherichia colithioredoxin from complementing peptide fragments obtained by cleavage at methionine-37 or arginine-73, J. Biol. Chem.25: 1340–1347.Google Scholar
  70. Taniuchi, H., Afinsen, C. B., and Sodja, A., 1967, Nuclease-T: An active derivative of staphylococcal nuclease composed of two noncovalently bonded peptide fragments, Proc. Natl. Acad. Sci. USA 58: 1235–1242.PubMedCrossRefGoogle Scholar
  71. Tschesche, H., and Kupfer, S., 1976, Hydrolysis—resynthesis equilibrium of the lysine-15-alanine-16 peptide bond in bovine trypsin inhibitor (Kunitz), Hoppe-Seyler’s Z. Physiol. Chem.357: 769–776.PubMedCrossRefGoogle Scholar
  72. Tschesche, H., Beckmann, J., Mehlich, A., Schnabel, E., and Wenzel, H. R., 1987, Semisynthetic engineering of proteinase inhibitor homologues, Biochem. Biophys. Acta.913: 97–101.PubMedCrossRefGoogle Scholar
  73. van Binsbergen, J., Slotboom, A. J., and de Haas, G. H., 1988, Modification of phospholipase A2, in: Proc. 20th Eur. Peptide Symposium (G. Jung, ed.) (in Apress).Google Scholar
  74. Varley, J. M., Davies, J. G., Shire, D., Offord, R. E., and Timmis, K. N., 1988, Engineered rat insulin I analogue having a B16 Tyr/Asp replacement exhibits unchanged susceptibility to cleavage by insulin proteinase, Eur. J. Biochem.171: 351–354.PubMedCrossRefGoogle Scholar
  75. Wallace, C. J. A., 1987, Functional consequences of the excision of an w-loop. Residues 40–55, from mitochondrial cytochrome c, J. Biol. Chem. 262: 16767–16770.PubMedGoogle Scholar
  76. Wallace, C. J. A., and Corthésy, B. E., 1986, Protein engineering of cytochrome cby semisynthesis: substitutions at glutamic acid 66, Protein Engineering 1: 23–27.PubMedGoogle Scholar
  77. Wallace, C. J. A., and Harris, D. E., 1984, The preparation of fully N-e-acetimylidated cytochrome c, Biochem. J.217: 589–594.PubMedGoogle Scholar
  78. Wallace, C. J. A., and Proudfoot, A. E. I., 1987a, Semisynthesis of a deletion mutant, of cytochrome cby condensation of enzymically activated fragments, in: Proc. 10th Amer. Peptide Symposium(C. M. Deber, V. J. Hruby, and K. D. Kopple, eds. ), pp. 372–375.Google Scholar
  79. Wallace, C. J. A., and Proudfoot, A. E. I., 1987b, On the relationship between oxidation-reduction potential and biological activity in cytochrome canalogues, Biochem. J.245: 773–779.Google Scholar
  80. Wallace, C. J. A., Corradin, G., Borin, G., and Marchiori, F., 1986, Cytochrome cchimerae from natural and synthetic fragments: Significance of the biological properties, Biopolymers 25: 2121–2132.PubMedCrossRefGoogle Scholar
  81. Widmer, F., and Johansen, J. F., 1979, Enzymatic peptide synthesis. Carboxypeptidase Y catalysed formation of peptide bonds, Carlsberg Res. Commun.44: 37–46.CrossRefGoogle Scholar
  82. Widmer, F., Breddam, K., and Johansen, J. T., 1981, Influence of the structure of the amine component on carboxypeptidase Y catalysed peptide bond formation, Carlsberg Res. Commun.46: 97–106.CrossRefGoogle Scholar
  83. Wieczorek, M., Park, S. J., and Laskowski, M. Jr., 1987, Covalent hybrids of ovomucoid third domains made from one synthetic and one natural peptide chain, Biochem. Biophys. Res. Commun.144: 499–504.PubMedCrossRefGoogle Scholar
  84. Wilson, M. E., and Whitesides, G. M., 1978, Conversion of a protein to a homogeneous asymmetric hydrogenation catalyst by site-specific modification with a diphosphinerhodium (I) moiety, J. Am. Chem. Soc.100: 306–307.CrossRefGoogle Scholar
  85. Yagisawa, S., 1981, Studies on protein semisynthesis. I. Formation of esters, hydrazides, and substituted hydrazides of peptides by the reverse reaction of trypsin, J. Biochem. (Tokyo) 89: 491–501.Google Scholar
  86. Zahn, H., Naithani, V. K., Gattner, H. G., Büllesbach, E. E., and Thamm, Pl.M., 1981, ProteinSemisynthese mit Hilfe gemischter Anhydride und Enzyme, Naturwissenschaften 68: 56–62.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Robin E. Offord
    • 1
  1. 1.Department of Medical BiochemistryUniversity of GenevaGeneva 4Switzerland

Personalised recommendations