Advertisement

Dynamic Processes in Proteins by X-Ray Diffraction

  • Dagmar Ringe
  • Steven C. Almo
  • Gregory K. Farber
  • Janos Hajdu
  • P. Lynne Howell
  • Gregory A. Petsko
  • Barry Stoddard
Part of the New Horizons in Therapeutics book series (NHTH)

Abstract

Proteins are dynamic systems. Their dynamic properties can be divided into three broad classes: individual atomic fluctuations, collective motions of bonded and nonbonded neighbouring atoms, and ligand-induced conformational changes (Ringe and Petsko, 1985). The first two classes represent small-amplitude excursions around the equilibrium conformation of a protein; triggered conformational changes lead to the formation of a new average structure. Although the time-scale of individual and collective fluctuations is relatively short (10−13 to 10−9 sec), they can be studied by a variety of spectroscopic techniques and can be simulated computationally by molecular dynamics calculations (Karplus and McCammon, 1983). It has even proved possible to map the spatial distributions of these motions by X-ray crystallography, because they produce a spreading of the electron density around each atom, which may be modeled by various distribution functions (Petsko and Ringe, 1984; Ringe and Petsko, 1985). Triggered conformational changes have proven much more difficult to study in detail. Their time-scales are too long (10−6 to 101 sec) for simulation by simple molecular dynamics techniques. Moreover, since they produce a change in the equilibrium conformation of the protein, they involve crossing relatively large potential energy barriers. Theoretical methods for simulating barrier crossings are only just being developed, and they require detailed knowledge of both the initial and final states of the molecule, as well as of any intermediate structures that have a lifetime longer than that of a single atomic vibration (10−15 sec).

Keywords

Protein Crystal Triose Phosphate Isomerase Xylose Isomerase Molecular Replacement Equilibrium Conformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alber, T., Petsko, G. A., and Tsemoglou, D., 1976, Crystal structure of an elastase-substrate complex at —55°C, Nature 263: 297–300.PubMedCrossRefGoogle Scholar
  2. Alber, T. C., Davenport, R. C., Jr., Giammona, D. A., Lolis, E., Petsko, G. A., and Ringe, D., 1988, Crystallography and site-directed mutagenesis of yeast triose phosphate isomerase. What can we learn about catalysis from a `simple’ enzyme? Cold Spring Harbor Symp. Quant. Biol. 12: 603–613.Google Scholar
  3. Albery, W. J., and Knowles, J. R., 1976, Free-energy profile for the reaction catalyzed by triose phosphate isomerase, Biochemistry 15: 5627–5631.PubMedCrossRefGoogle Scholar
  4. Bishop, W. H., and Richards, F. M., 1968, Properties of ligands in small pores, J. Mol. Biol. 38: 315–328.PubMedCrossRefGoogle Scholar
  5. Brünger, A. T., Kuriyan, J., and Karplus, M., 1987, Crystallographic R factor refinement by molecular dynamics, Science 235: 458–460.PubMedCrossRefGoogle Scholar
  6. Cruickshank, D. W. J., Helliwell, J. R., and Moffat, K., 1987, Multiplicity distribution of reflections in Laue diffraction, Acta Cryst. A43: 656–674.CrossRefGoogle Scholar
  7. Douzou, P., and Petsko, G. A., 1984, Proteins at work: “Stop-action” pictures at sub-zero temperatures, Adv. Prot. Chem. 36: 246–361.Google Scholar
  8. Farber, G. K., Petsko, G. A., and Ringe D., 1987, The 3.0 A crystal structure of xylose isomerase from Streptomyces olivochromogenes, Protein Engineering 1: 459–466.PubMedCrossRefGoogle Scholar
  9. Farber, G. K., Machin, P., Almo, S. C., Petsko, G. A., and Hajdu, J., 1988, X-ray Laue diffraction from crystals of xylose isomerase, Proc. Natl. Acad. Sci. USA 85: 112–115.PubMedCrossRefGoogle Scholar
  10. Fink, A. L., and Petsko, G. A., 1981, X-ray cryoenzymology, Adv. Enzymol. 52: 177–246.PubMedGoogle Scholar
  11. Friedrich, W., Knipping, P., and von Laue, M., 1912, Sitzungsberichte der Math. Phys. Klasse (Kgl.), Bayerische Akademie der Wissenschaften,München, pp. 303–322.Google Scholar
  12. Hajdu, J., Acharya, K. R., Stuart, D. I., McLaughlin, P. J., Barford, D., Klein, H. W., Oikonomakos, N. G., and Johnson, L. N., 1987a, Catalysis in the crystal: Synchrotron radiation studies with glycogen phosphorylase b, EMBO J. 6: 539–546.PubMedGoogle Scholar
  13. Hajdu, J., Machin, P. A., Campbell, J. W., Greenough, T. J., Clifton, I. J., Zurek, S., Gover, S.. Johnson, L. N., and Elder, M., 1987b, Millisecond X-ray diffraction and the first electron density map from Laue photographs of a protein crystal, Nature 329: 178–181.PubMedCrossRefGoogle Scholar
  14. Hajdu, J., Acharya, K. R., Stuart, D. I., Barford, D., and Johnson, L. N., 1988, Catalysis in enzyme crystals, Trends Biochem. Sci. 13: 104–109.PubMedCrossRefGoogle Scholar
  15. Kantrowitz, E. R., and Lipscomb, W. N., 1988, E. coli aspartate transcarbamylase: The relation between structure and function, Science 241: 669–674.PubMedCrossRefGoogle Scholar
  16. Karplus, M., and McCammon, J. A., 1983, Dynamics of proteins: Elements and functions, Annu. Rev. Biochem. 52: 263–300.PubMedCrossRefGoogle Scholar
  17. Makinen, M., and Fink, A. L., 1977, Reactivity and cryoenzymology of enzymes in the crystalline state, Annu. Rev. Biophys. Bioeng. 6: 301–342.PubMedCrossRefGoogle Scholar
  18. Moffat, K., Szebenyi, D. M. E., and Bilderback, D. H., 1984, X-ray Laue diffraction from protein crystals, Science 223: 1423–1425.PubMedCrossRefGoogle Scholar
  19. Neidhart, D. J., Powers, V. M., Kenyon, G. L., Tsou, A. Y., Ransom, S. C., Gerlt, J. A., and Petsko, G. A., 1988, Preliminary X-ray data on crystals of mandelate racemase, J. Biol. Chem. 263: 9268–9270.PubMedGoogle Scholar
  20. Nickbarg, E. B., Davenport, Jr., R. C., Petsko, G. A., and Knowles, J. R., 1988, Triosephosphate isomerase from yeast: Removal of a putatively electrophilic histidine results in a subtle change in catalytic mechanism, Biochemistry 27: 5948–5960.PubMedCrossRefGoogle Scholar
  21. Perutz, M. F., 1970, Stereochemistry of cooperative effects in haemoglobin, Nature 228: 726–734.PubMedCrossRefGoogle Scholar
  22. Petsko, G. A., 1985, Flow cell construction and use, Methods Enzymol. 114: 141–146.PubMedCrossRefGoogle Scholar
  23. Petsko, G. A., and Ringe, D., 1984, Fluctuations in protein structure from X-ray diffraction, Annu. Rev. Biophys. Bioeng. 13: 331–371.PubMedCrossRefGoogle Scholar
  24. Phillips, D. C., 1966, The three-dimensional structure of an enzyme molecule, Sci. Am. 215: 78–90.PubMedCrossRefGoogle Scholar
  25. Pool, R., 1988, Molecular photography with an X-ray flash, Science 241: 295.PubMedCrossRefGoogle Scholar
  26. Ringe, D., 1987, Protein crystallography: Catching up with fast changes, Nature 329: 102.PubMedCrossRefGoogle Scholar
  27. Ringe, D., and Petsko, G. A., 1985, Mapping protein dynamics by X-ray diffraction, Prog. Biophys. Mol. Biol. 45: 197–235.PubMedCrossRefGoogle Scholar
  28. Rossman, M. G., 1972, The Molecular Replacement Method, Gordon Breach, New York.Google Scholar
  29. Smith, D., Almo, S. C., Ringe, D., and Toney, M. D., 1989, 2.8 A resolution crystal structure of an active site mutant of aspartate aminotransferase from E. coli, Biochemistry 28:8161–8167.Google Scholar
  30. Turner, A. D., Pizzo, S. V., Rozakis, G. W., and Porter, N. A., 1987, Photochemical activation of acylated a-thrombin, J. Am. Chem. Soc. 109: 1274–1275.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Dagmar Ringe
    • 1
  • Steven C. Almo
    • 1
  • Gregory K. Farber
    • 1
  • Janos Hajdu
    • 2
  • P. Lynne Howell
    • 1
  • Gregory A. Petsko
    • 1
  • Barry Stoddard
    • 1
  1. 1.Department of ChemistryMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Laboratory of Molecular BiophysicsUniversity of OxfordOxfordEngland

Personalised recommendations