Glucose Dose Response of Pancreatic β-Cells: Experimental and Theoretical Results

  • Arthur Sherman
  • Patricia Carroll
  • Rosa M. Santos
  • Illani Atwater
Part of the Series of the Centro de Estudios Científicos de Santiago book series (SCEC)


Islets of Langerhans are functional units of thousands of endocrine cells located within the pancreas. Approximately 85% of the cells within the islet are β-cells. β-cells secrete insulin, the hormone critical in the regulation of fuel metabolism. The major focus of insulin action is the maintenance of glucose homeostasis; however, insulin also regulates storage and breakdown of fats. Through complex interactions between the β-cells and target tissues of insulin action (liver, muscle, and fat cells), fuel homeostasis is closely regulated in both fasting and fed states.


Removal Rate Intracellular Calcium Potassium Channel Dose Response Dose Response Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Halter, J. B., Ward, W. K., Porte, D., Best, J. D., and Pfeiffer, M. A., 1985, Glucose regulation in non-insulin-dependent diabetes mellitus, Am. J. Med. 79(2B): 6–12.PubMedCrossRefGoogle Scholar
  2. 2.
    Meissner, H. P., and Schmidt, H., 1976, The electrical activity of pancreatic β-cells of diabetic mice, FEBS Lett. 67: 371–374.PubMedCrossRefGoogle Scholar
  3. 3.
    Rosario, L. M., Atwater, I., and Rojas, E., 1985, Membrane potential measurements in islets of Langerhans from ob/ob obese mice suggest an alteration in [Ca2+]-activated K+ permeability, Q. J. Exp. Physiol. 70: 137–150.PubMedGoogle Scholar
  4. 4.
    National Diabetes Data Group, 1979, Classification and diagnosis of diabetes mellitus and other categories of glucose intolerance, Diabetes 28: 1039–1057.Google Scholar
  5. 5.
    Dean, P. M., and Mathews, E. K., 1970, Glucose-induced electrical activity in pancreatic islet cells, J. Physiol. (Lond.) 210: 255–264.Google Scholar
  6. 6.
    Scott, A. M., Atwater, I., and Rojas, E., 1981, A method for the simultaneous measurement of insulin release and β-cell membrane potential in single mouse islets of Langerhans, Diabetologia 21: 470–475.PubMedCrossRefGoogle Scholar
  7. 7.
    Henquin, J. C., 1978, D-glucose inhibits potassium efflux from pancreatic islet cells, Nature 271: 271–273.PubMedCrossRefGoogle Scholar
  8. 8.
    Atwater, I., Ribalet, B., and Rojas, E., 1978, Cyclic changes in potential and resistance of the β-cell membrane induced by glucose in islets of Langerhans from mouse, J. Physiol. (Lond.) 278: 117–139.Google Scholar
  9. 9.
    Atwater, I., Dawson, C. M., Scott, A., Eddlestone, G., and Rojas, E., 1980, The nature of the oscillatory behavior in electrical activity for pancreatic β-cell, Horm. Metab. Res. (Suppl.) 10: 100–107.Google Scholar
  10. 10.
    Chay, T. R., and Keizer, J., 1983, Minimal model for membrane oscillations in the pancreatic β-cell, Biophys. J. 42: 181–190.PubMedCrossRefGoogle Scholar
  11. 11.
    Rorsman, P., and Trübe, G., 1986, Calcium and delayed potassium currents in mouse pancreatic ß-cells under voltage clamp conditions, J. Physiol. (Lond.) 374: 531–550.Google Scholar
  12. 12.
    Cook, D. L., and Hales, C. N., 1984, Intracellular ATP directly blocks K+ channels in pancreatic β-cells, Nature 311: 271–273.PubMedCrossRefGoogle Scholar
  13. 13.
    Ashcroft, F. M., Harrison, D. E., and Ashcroft, S. J. H., 1984, Glucose induces closure of single potassium channels in isolated rat pancreatic β-cells, Nature 312: 446–448.PubMedCrossRefGoogle Scholar
  14. 14.
    Trube, G., Rorsman, P., and Ohno-Shosaku T., 1986, Opposite effects of tolbutamide and diazoxide on the ATP-dependent K+ channel in mouse pancreatic β-cells, Pflügers Arch. 407: 493–499.PubMedCrossRefGoogle Scholar
  15. 15.
    Misler, S., Falke, L. C., Gillis, K., McDaniel, M. L., 1986, A metabolite-regulated potassium channel in rat pancreatic β-cells, Proc. Natl. Acad. Sci. USA 83: 7119–7123.PubMedCrossRefGoogle Scholar
  16. 16.
    Ashcroft, F. M., 1987, Adenosine 5′-triphosphate-sensitive potassium channels, Annu. Rev. Neurosci. 11: 97–118.CrossRefGoogle Scholar
  17. 17.
    Findlay, I., Dunne, M. J., and Peterson, O. H., 1985, High-conductance K+ channel in pancreatic islet cells can be activated and inactivated by internal calcium, J. Membr. Biol. 83: 169–175.PubMedCrossRefGoogle Scholar
  18. 18.
    Atwater, I., Li, M-X., Rojas, E., and Stutzin, A., 1988, Glucose reduces both ATP-blockable and Ca-activated K-channel activity in cell-attached patches from rat pancreatic β-cells in culture, Biophys. J. 53(2), Pt. 2: 145a (abstr.).Google Scholar
  19. 19.
    Ribalet, B., Eddelstone, G. T., Ciani, S., 1988, Glucose modulation of two K-channels in an insulin-secreting cell line, Biophys. J. 53(2), Pt. 2: 460a [abstr.].Google Scholar
  20. 20.
    Ashcroft, F. M., Harrison, D. E., and Ashcroft, S. J. H., 1986, A potassium channel modulated by glucose metabolism in rat pancreatic β-cells, Adv. Exp. Med. Biol. 211: 53–62.PubMedGoogle Scholar
  21. 21.
    Plant, R. E., 1978, The effects of Ca2+ on bursting neurons: A modeling study, Biophys. J. 21: 217–237.PubMedCrossRefGoogle Scholar
  22. 22.
    Frankenhaeuser, B., and Hodgkin, A. L., 1956, The after-effects of impulses in the giant nerve fibres of Loligo, J. Physiol. (Lond.) 131: 341–376.Google Scholar
  23. 23.
    Velasco, J. M., and Petersen, O. H., 1987, Voltage-activation of high-conductance K+ channel in the insulin-secreting cell line RINm5F is dependent on local extracellular Ca2+ concentration, Biochim. Biphys. Acta 896: 305–310.CrossRefGoogle Scholar
  24. 24.
    Sherman, A., Rinzel, J., and Keizer, J., 1988, Emergence of organized bursting in clusters of pancreatic β-cells by channel sharing, Biophys. J. 54: 411–425.PubMedCrossRefGoogle Scholar
  25. 25.
    Chay, T. R., 1986, On the effect of the intracellular calcium-sensitive potassium channel in the bursting pancreatic β-cell, Biophys. J. 50: 765–777.PubMedCrossRefGoogle Scholar
  26. 26.
    Chay, T. R., 1987, The effect of inactivation of calcium channels by intracellular Ca2+ ions in the bursting pancreatic β-cell, Cell Biophys. 11: 77–90.PubMedGoogle Scholar
  27. 27.
    Keizer, J. E., 1988, Electrical activity and insulin release in pancreatic ß-cells, Math. Biosci. 90: 127–138.CrossRefGoogle Scholar
  28. 28.
    Atwater, I., and Rinzel, J., 1986, The β-cell bursting pattern and intracellular calcium, in: Ionic Channels in Cells and Model Systems (R. Latorre, ed.), Plenum, New York, pp. 353–362.Google Scholar
  29. 29.
    Rinzel, J., 1985, Bursting oscillations in an excitable membrane model, in: Ordinary and Partial Differential Equations (B. D. Sleeman and R. J. Jarvis, eds.), Springer-Verlag, New York, pp. 304–316.CrossRefGoogle Scholar
  30. 30.
    Hodgkin, A. L., and Huxley, A. F., 1952, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. (Lond.) 117: 205–249.Google Scholar
  31. 31.
    Atwater, I., Gonçalves, A., Herchuelz, A., Lebrun, P., Malaisse, W. J., Rojas, E., and Scott, A., 1984, Cooling dissociates glucose-induced insulin release from electrical activity and cation fluxes in rodent pancreatic islets, J. Physiol. (Lond.) 348: 614–627.Google Scholar
  32. 32.
    Himmel, D., and Chay, T. R., 1987, Theoretical studies on the electrical activity of pancreatic β-cells as a function of glucose, Biophys. J. 51: 89–107.PubMedCrossRefGoogle Scholar
  33. 33.
    Dawson, C. M., Atwater, I., and Rojas, E., 1984, The response of pancreatic ß-cell membrane potential to potassium-induced calcium influx in the presence of glucose, Q. J. Exp. Physiol. 69: 819–830.PubMedGoogle Scholar
  34. 34.
    Perez-Armendariz, E., and Atwater, I., 1986, Glucose-evoked changes in [K+] and [Ca2+] in the intercellular spaces of the mouse islet of Langerhans, in: Biophysics of the Pancreatic ß-cell (I. Atwater, E. Rojas, and B. Soria, eds.), Plenum, New York, pp. 31–51.Google Scholar
  35. 35.
    Chay, T. R., and Keizer, J., 1985, Theory of the effect of extracellular potassium on oscillations in the pancreatic β-cell, Biophys. J. 48: 815–827.PubMedCrossRefGoogle Scholar
  36. 36.
    Henquin, J. C., and Lambert, A. E., 1976, Bicarbonate modulation of glucose-induced biphasic insulin release by rat islets, Am. J. Physiol. 231: 713–721.PubMedGoogle Scholar
  37. 37.
    Carroll, P., Li, M-X., Rojas, E., and Atwater, I., 1988, Physiological bicarbonate buffer inhibits the activity of the ATP-sensitive potassium channel in pancreatic ß-cells, FEBS Lett. 234: 208–212.PubMedCrossRefGoogle Scholar
  38. 38.
    Lindstrom, P., and Sehlin, J., 1986, Effect of intracellular alkalinization on pancreatic islet calcium uptake and insulin secretion, Biochem. J. 239: 199–204.PubMedGoogle Scholar
  39. 39.
    Rinzel, J., Chay, T. R., Himmel, D., and Atwater, I., 1986, Prediction of the glucose-induced changes in membrane ionic permeability and cytosolic Ca2+ by mathematical modeling, in: Biophysics of the Pancreatic β-Cell (I. Atwater, E. Rojas, and B. Soria, eds.), Plenum, New York, pp. 247–263.Google Scholar
  40. 40.
    Smith, J. S., and Pace, C. S., 1983, Modification of glucose-induced insulin release by alteration of pH, Diabetes 32: 6106.CrossRefGoogle Scholar
  41. 41.
    Hutton, J. C., Sener, A., Herchuelz, A., Valverde, L., Boschero, A. C., Malaisse, W. J., 1980, The stimulus-secretion coupling of glucose-induced insulin release: Effects of extracellular pH on insulin release: their dependency on nutrient concentration, Horm. Metab. Res. 12: 294–299.PubMedCrossRefGoogle Scholar
  42. 42.
    Gillis, K., Tabcharani, J., Hammoud, A., and Misler, S., 1988, Effects of ammonium chloride (NH4CI) and sodium proprionate (NaPr) on the activity of a metabolite-regulated K+ channel in rat pancreatic islet and RIN insulinoma cells, Biophys. J. 53(2), Pt. 2: 530a [abstr.].Google Scholar
  43. 43.
    Li, M-X., Carroll, P. B., Li, M-Y., Rojas, E., 1988, Patch-clamp measurements show removal of HCO3/CO2 and changes in pH alter a glucose-sensing mechanism of the β-cell: K-ATP channel activity, Diabetes 37, Supp. 1, p. 194a, Abstract No. 750.Google Scholar
  44. 44.
    Atwater, I., Carroll, P. B., and Li, M-X., 1989, Electrophysiology of the pancreatic β-cell, in: Insulin Secretion: Molecular and Cellular Biology of Diabetes Mellitus (B. Draznin, S. Melmed, and D. Leroith, eds.), Alan R. Liss, Inc., New York, pp. 49–68.Google Scholar
  45. 45.
    Cook, D. L., Ikeuchi, M., and Fujimoto, W. Y., 1984, Lowering of pH inhibits calcium-activated potassium channels in isolated rat pancreatic islet cells, Nature 311: 269–271.PubMedCrossRefGoogle Scholar
  46. 46.
    Ribalet, B., and Ciani, S., 1987, Regulation by cell metabolism and adenine nucleotides of a K-channel in insulin-secreting β-cells (RINm5F), Proc. Natl. Acad. Sci. USA 84: 1721–1725.PubMedCrossRefGoogle Scholar
  47. 47.
    Meissner, H. P., and Atwater, I. J., 1976, The kinetics of electrical activity of β-cells in response to a “square wave” stimulation with glucose of glibenclamide, Horm. Metab. Res. 8; 11–16.PubMedCrossRefGoogle Scholar
  48. 48.
    Henquin, J. C., and Meissner, H. P., 1982, Opposite effects of tolbutamide and diazoxide on 86 Rb+ fluxes and membrane potential in pancreatic β-cells, Biochem. Pharmacol. 31: 1407–1415.PubMedCrossRefGoogle Scholar
  49. 49.
    Ferrer, R., Atwater, I., Omer, E. M., Goncalves, A. A., Croghan, P. C., and Rojas, E., 1982, Electrophysiological evidence for the inhibition of potassium permeability in pancreatic β-cells by glibenclamide, Q. J. Exp. Physiol. 69: 831–839.Google Scholar
  50. 50.
    Chay, T. R., and Kang, H. S., 1987, Multiple oscillatory states and chaos in the endogenous activity of excitable cells: Pancreatic β-cell as an example, in: Chaos in Biological Systems (H. Degn, A. V. Holden, L. F. Olsen, eds.), Plenum, New York, pp. 173–181.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Arthur Sherman
    • 1
  • Patricia Carroll
    • 2
  • Rosa M. Santos
    • 2
  • Illani Atwater
    • 2
  1. 1.Mathematics Research Branch, National Institutes of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaUSA
  2. 2.Laboratory of Cell Biology and Genetics, National Institutes of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaUSA

Personalised recommendations