Skip to main content

Glucose Dose Response of Pancreatic β-Cells: Experimental and Theoretical Results

  • Chapter

Abstract

Islets of Langerhans are functional units of thousands of endocrine cells located within the pancreas. Approximately 85% of the cells within the islet are β-cells. β-cells secrete insulin, the hormone critical in the regulation of fuel metabolism. The major focus of insulin action is the maintenance of glucose homeostasis; however, insulin also regulates storage and breakdown of fats. Through complex interactions between the β-cells and target tissues of insulin action (liver, muscle, and fat cells), fuel homeostasis is closely regulated in both fasting and fed states.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Halter, J. B., Ward, W. K., Porte, D., Best, J. D., and Pfeiffer, M. A., 1985, Glucose regulation in non-insulin-dependent diabetes mellitus, Am. J. Med. 79(2B): 6–12.

    Article  PubMed  CAS  Google Scholar 

  2. Meissner, H. P., and Schmidt, H., 1976, The electrical activity of pancreatic β-cells of diabetic mice, FEBS Lett. 67: 371–374.

    Article  PubMed  CAS  Google Scholar 

  3. Rosario, L. M., Atwater, I., and Rojas, E., 1985, Membrane potential measurements in islets of Langerhans from ob/ob obese mice suggest an alteration in [Ca2+]-activated K+ permeability, Q. J. Exp. Physiol. 70: 137–150.

    PubMed  CAS  Google Scholar 

  4. National Diabetes Data Group, 1979, Classification and diagnosis of diabetes mellitus and other categories of glucose intolerance, Diabetes 28: 1039–1057.

    Google Scholar 

  5. Dean, P. M., and Mathews, E. K., 1970, Glucose-induced electrical activity in pancreatic islet cells, J. Physiol. (Lond.) 210: 255–264.

    CAS  Google Scholar 

  6. Scott, A. M., Atwater, I., and Rojas, E., 1981, A method for the simultaneous measurement of insulin release and β-cell membrane potential in single mouse islets of Langerhans, Diabetologia 21: 470–475.

    Article  PubMed  CAS  Google Scholar 

  7. Henquin, J. C., 1978, D-glucose inhibits potassium efflux from pancreatic islet cells, Nature 271: 271–273.

    Article  PubMed  CAS  Google Scholar 

  8. Atwater, I., Ribalet, B., and Rojas, E., 1978, Cyclic changes in potential and resistance of the β-cell membrane induced by glucose in islets of Langerhans from mouse, J. Physiol. (Lond.) 278: 117–139.

    CAS  Google Scholar 

  9. Atwater, I., Dawson, C. M., Scott, A., Eddlestone, G., and Rojas, E., 1980, The nature of the oscillatory behavior in electrical activity for pancreatic β-cell, Horm. Metab. Res. (Suppl.) 10: 100–107.

    CAS  Google Scholar 

  10. Chay, T. R., and Keizer, J., 1983, Minimal model for membrane oscillations in the pancreatic β-cell, Biophys. J. 42: 181–190.

    Article  PubMed  CAS  Google Scholar 

  11. Rorsman, P., and Trübe, G., 1986, Calcium and delayed potassium currents in mouse pancreatic ß-cells under voltage clamp conditions, J. Physiol. (Lond.) 374: 531–550.

    CAS  Google Scholar 

  12. Cook, D. L., and Hales, C. N., 1984, Intracellular ATP directly blocks K+ channels in pancreatic β-cells, Nature 311: 271–273.

    Article  PubMed  CAS  Google Scholar 

  13. Ashcroft, F. M., Harrison, D. E., and Ashcroft, S. J. H., 1984, Glucose induces closure of single potassium channels in isolated rat pancreatic β-cells, Nature 312: 446–448.

    Article  PubMed  CAS  Google Scholar 

  14. Trube, G., Rorsman, P., and Ohno-Shosaku T., 1986, Opposite effects of tolbutamide and diazoxide on the ATP-dependent K+ channel in mouse pancreatic β-cells, Pflügers Arch. 407: 493–499.

    Article  PubMed  CAS  Google Scholar 

  15. Misler, S., Falke, L. C., Gillis, K., McDaniel, M. L., 1986, A metabolite-regulated potassium channel in rat pancreatic β-cells, Proc. Natl. Acad. Sci. USA 83: 7119–7123.

    Article  PubMed  CAS  Google Scholar 

  16. Ashcroft, F. M., 1987, Adenosine 5′-triphosphate-sensitive potassium channels, Annu. Rev. Neurosci. 11: 97–118.

    Article  Google Scholar 

  17. Findlay, I., Dunne, M. J., and Peterson, O. H., 1985, High-conductance K+ channel in pancreatic islet cells can be activated and inactivated by internal calcium, J. Membr. Biol. 83: 169–175.

    Article  PubMed  CAS  Google Scholar 

  18. Atwater, I., Li, M-X., Rojas, E., and Stutzin, A., 1988, Glucose reduces both ATP-blockable and Ca-activated K-channel activity in cell-attached patches from rat pancreatic β-cells in culture, Biophys. J. 53(2), Pt. 2: 145a (abstr.).

    Google Scholar 

  19. Ribalet, B., Eddelstone, G. T., Ciani, S., 1988, Glucose modulation of two K-channels in an insulin-secreting cell line, Biophys. J. 53(2), Pt. 2: 460a [abstr.].

    Google Scholar 

  20. Ashcroft, F. M., Harrison, D. E., and Ashcroft, S. J. H., 1986, A potassium channel modulated by glucose metabolism in rat pancreatic β-cells, Adv. Exp. Med. Biol. 211: 53–62.

    PubMed  CAS  Google Scholar 

  21. Plant, R. E., 1978, The effects of Ca2+ on bursting neurons: A modeling study, Biophys. J. 21: 217–237.

    Article  PubMed  CAS  Google Scholar 

  22. Frankenhaeuser, B., and Hodgkin, A. L., 1956, The after-effects of impulses in the giant nerve fibres of Loligo, J. Physiol. (Lond.) 131: 341–376.

    CAS  Google Scholar 

  23. Velasco, J. M., and Petersen, O. H., 1987, Voltage-activation of high-conductance K+ channel in the insulin-secreting cell line RINm5F is dependent on local extracellular Ca2+ concentration, Biochim. Biphys. Acta 896: 305–310.

    Article  CAS  Google Scholar 

  24. Sherman, A., Rinzel, J., and Keizer, J., 1988, Emergence of organized bursting in clusters of pancreatic β-cells by channel sharing, Biophys. J. 54: 411–425.

    Article  PubMed  CAS  Google Scholar 

  25. Chay, T. R., 1986, On the effect of the intracellular calcium-sensitive potassium channel in the bursting pancreatic β-cell, Biophys. J. 50: 765–777.

    Article  PubMed  CAS  Google Scholar 

  26. Chay, T. R., 1987, The effect of inactivation of calcium channels by intracellular Ca2+ ions in the bursting pancreatic β-cell, Cell Biophys. 11: 77–90.

    PubMed  CAS  Google Scholar 

  27. Keizer, J. E., 1988, Electrical activity and insulin release in pancreatic ß-cells, Math. Biosci. 90: 127–138.

    Article  CAS  Google Scholar 

  28. Atwater, I., and Rinzel, J., 1986, The β-cell bursting pattern and intracellular calcium, in: Ionic Channels in Cells and Model Systems (R. Latorre, ed.), Plenum, New York, pp. 353–362.

    Google Scholar 

  29. Rinzel, J., 1985, Bursting oscillations in an excitable membrane model, in: Ordinary and Partial Differential Equations (B. D. Sleeman and R. J. Jarvis, eds.), Springer-Verlag, New York, pp. 304–316.

    Chapter  Google Scholar 

  30. Hodgkin, A. L., and Huxley, A. F., 1952, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. (Lond.) 117: 205–249.

    Google Scholar 

  31. Atwater, I., Gonçalves, A., Herchuelz, A., Lebrun, P., Malaisse, W. J., Rojas, E., and Scott, A., 1984, Cooling dissociates glucose-induced insulin release from electrical activity and cation fluxes in rodent pancreatic islets, J. Physiol. (Lond.) 348: 614–627.

    Google Scholar 

  32. Himmel, D., and Chay, T. R., 1987, Theoretical studies on the electrical activity of pancreatic β-cells as a function of glucose, Biophys. J. 51: 89–107.

    Article  PubMed  CAS  Google Scholar 

  33. Dawson, C. M., Atwater, I., and Rojas, E., 1984, The response of pancreatic ß-cell membrane potential to potassium-induced calcium influx in the presence of glucose, Q. J. Exp. Physiol. 69: 819–830.

    PubMed  CAS  Google Scholar 

  34. Perez-Armendariz, E., and Atwater, I., 1986, Glucose-evoked changes in [K+] and [Ca2+] in the intercellular spaces of the mouse islet of Langerhans, in: Biophysics of the Pancreatic ß-cell (I. Atwater, E. Rojas, and B. Soria, eds.), Plenum, New York, pp. 31–51.

    Google Scholar 

  35. Chay, T. R., and Keizer, J., 1985, Theory of the effect of extracellular potassium on oscillations in the pancreatic β-cell, Biophys. J. 48: 815–827.

    Article  PubMed  CAS  Google Scholar 

  36. Henquin, J. C., and Lambert, A. E., 1976, Bicarbonate modulation of glucose-induced biphasic insulin release by rat islets, Am. J. Physiol. 231: 713–721.

    PubMed  CAS  Google Scholar 

  37. Carroll, P., Li, M-X., Rojas, E., and Atwater, I., 1988, Physiological bicarbonate buffer inhibits the activity of the ATP-sensitive potassium channel in pancreatic ß-cells, FEBS Lett. 234: 208–212.

    Article  PubMed  CAS  Google Scholar 

  38. Lindstrom, P., and Sehlin, J., 1986, Effect of intracellular alkalinization on pancreatic islet calcium uptake and insulin secretion, Biochem. J. 239: 199–204.

    PubMed  CAS  Google Scholar 

  39. Rinzel, J., Chay, T. R., Himmel, D., and Atwater, I., 1986, Prediction of the glucose-induced changes in membrane ionic permeability and cytosolic Ca2+ by mathematical modeling, in: Biophysics of the Pancreatic β-Cell (I. Atwater, E. Rojas, and B. Soria, eds.), Plenum, New York, pp. 247–263.

    Google Scholar 

  40. Smith, J. S., and Pace, C. S., 1983, Modification of glucose-induced insulin release by alteration of pH, Diabetes 32: 6106.

    Article  Google Scholar 

  41. Hutton, J. C., Sener, A., Herchuelz, A., Valverde, L., Boschero, A. C., Malaisse, W. J., 1980, The stimulus-secretion coupling of glucose-induced insulin release: Effects of extracellular pH on insulin release: their dependency on nutrient concentration, Horm. Metab. Res. 12: 294–299.

    Article  PubMed  CAS  Google Scholar 

  42. Gillis, K., Tabcharani, J., Hammoud, A., and Misler, S., 1988, Effects of ammonium chloride (NH4CI) and sodium proprionate (NaPr) on the activity of a metabolite-regulated K+ channel in rat pancreatic islet and RIN insulinoma cells, Biophys. J. 53(2), Pt. 2: 530a [abstr.].

    Google Scholar 

  43. Li, M-X., Carroll, P. B., Li, M-Y., Rojas, E., 1988, Patch-clamp measurements show removal of HCO3/CO2 and changes in pH alter a glucose-sensing mechanism of the β-cell: K-ATP channel activity, Diabetes 37, Supp. 1, p. 194a, Abstract No. 750.

    Google Scholar 

  44. Atwater, I., Carroll, P. B., and Li, M-X., 1989, Electrophysiology of the pancreatic β-cell, in: Insulin Secretion: Molecular and Cellular Biology of Diabetes Mellitus (B. Draznin, S. Melmed, and D. Leroith, eds.), Alan R. Liss, Inc., New York, pp. 49–68.

    Google Scholar 

  45. Cook, D. L., Ikeuchi, M., and Fujimoto, W. Y., 1984, Lowering of pH inhibits calcium-activated potassium channels in isolated rat pancreatic islet cells, Nature 311: 269–271.

    Article  PubMed  CAS  Google Scholar 

  46. Ribalet, B., and Ciani, S., 1987, Regulation by cell metabolism and adenine nucleotides of a K-channel in insulin-secreting β-cells (RINm5F), Proc. Natl. Acad. Sci. USA 84: 1721–1725.

    Article  PubMed  CAS  Google Scholar 

  47. Meissner, H. P., and Atwater, I. J., 1976, The kinetics of electrical activity of β-cells in response to a “square wave” stimulation with glucose of glibenclamide, Horm. Metab. Res. 8; 11–16.

    Article  PubMed  CAS  Google Scholar 

  48. Henquin, J. C., and Meissner, H. P., 1982, Opposite effects of tolbutamide and diazoxide on 86 Rb+ fluxes and membrane potential in pancreatic β-cells, Biochem. Pharmacol. 31: 1407–1415.

    Article  PubMed  CAS  Google Scholar 

  49. Ferrer, R., Atwater, I., Omer, E. M., Goncalves, A. A., Croghan, P. C., and Rojas, E., 1982, Electrophysiological evidence for the inhibition of potassium permeability in pancreatic β-cells by glibenclamide, Q. J. Exp. Physiol. 69: 831–839.

    Google Scholar 

  50. Chay, T. R., and Kang, H. S., 1987, Multiple oscillatory states and chaos in the endogenous activity of excitable cells: Pancreatic β-cell as an example, in: Chaos in Biological Systems (H. Degn, A. V. Holden, L. F. Olsen, eds.), Plenum, New York, pp. 173–181.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Sherman, A., Carroll, P., Santos, R.M., Atwater, I. (1990). Glucose Dose Response of Pancreatic β-Cells: Experimental and Theoretical Results. In: Hidalgo, C., Bacigalupo, J., Jaimovich, E., Vergara, J. (eds) Transduction in Biological Systems. Series of the Centro de Estudios Científicos de Santiago. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5736-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5736-0_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5738-4

  • Online ISBN: 978-1-4684-5736-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics