Role of Membrane Receptors in Stimulus-Secretion Coupling

  • Eduardo Rojas
  • Rosa M. Santos
  • Illani Atwater
Part of the Series of the Centro de Estudios Científicos de Santiago book series (SCEC)


In the last two decades there has been an exponential increase in our fundamental knowledge of hormone receptors. The literature accumulated is so vast that it is impossible to cover in any depth, in a short review, all the aspects of hormone-receptor interaction. In this chapter we will consider only two aspects. First, the modulation of the membrane-bound enzyme system adenylate cyclase, and, second, the perturbation of the phosphoinositide cycle caused by neurotransmitters involved in the neural control of catecholamine and insulin secretion. To this end, a mechanism for the generation of intracellular signals resulting from the activation of adrenergic and cholinergic receptors will be also considered, and illustrative examples of receptor-controlled electrical activity and ATP secretion will be presented.


Adenylate Cyclase Muscarinic Receptor Insulin Release Chromaffin Cell Phosphatidic Acid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gilman, A. G., 1984, G proteins and dual control of adenylate cyclase, Cell 36: 577–579.PubMedCrossRefGoogle Scholar
  2. 2.
    Smigel, M., Katada, T., Northup, J. K., Bokoch, G. M., Ui, M., and Gilman, A. G., 1984, Mechanisms of guanine nucleotide-mediated regulation of adenylate cyclase activity, Adv. Cyclic Nucleotide Protein Phosphor. Res. 17: 1–18.Google Scholar
  3. 3.
    Smigel, M. D., Northup, J. K., and Gilman, A. G., 1982, Characteristics of the guanine nucleotide-binding regulatory component of adenylate cyclase, Rec. Proc. Horm. Res. 38: 601–626.Google Scholar
  4. 4.
    Bourne, H. R., Medynski, D., Vandop, C., Sullivan, K., and Chang, F. H., 1985, Genetic and functional studies of pertussis toxin substrates, in: Pertussis Toxin (R. D. Sekura, J. Moss, and M. Vaughan, eds.) Academic, Orlando, pp. 167–184.Google Scholar
  5. 5.
    Birnbaumer, L., Codina, J., Sunyer, T., Rosenthal, W., Hilderbrandt, J., Cenone, R. A., Caron, M. G., Lefkowitz, R. J., and Sekura, R. D., 1985, Structural and functional properties of N5 and Ni, the regulatory components of adenyl cyclases, in: Pertussis Toxin (R. D. Sekura, J. Moss, and M. Vaughan, eds.), Academic, Orlando, pp. 77–104.Google Scholar
  6. 6.
    Nakadate, T., Nakari, T., Muraki, T., and Kato, R., 1980, Regulation of plasma insulin level by α2-adrenergic receptors, Eur. J. Pharmacol. 65: 421–424.PubMedCrossRefGoogle Scholar
  7. 7.
    Katada, T., and Ui, M., 1977, Perfusion of the pancreas isolated from pertussis-sensitized rats: Potentiation of insulin secretory responses due to β-adrenergic stimulation, Endocrinology 101: 1247–1255.PubMedCrossRefGoogle Scholar
  8. 8.
    Katada, T., and Ui, M., 1979, Effect of in vivo pretreatment of rats with a new protein purified from Bordetella pertussis on in vitro secretion of insulin: Role of calcium, Endocrinology 104: 1822–1827.PubMedCrossRefGoogle Scholar
  9. 9.
    Yajima, M., Hosada, K., Kanbayashi, Y., Nakamura, T., Nogimori, K., Mizushima, Y., and Ui, M., 1978a, Islets-activating protein (IAP) in Bordetella pertussis that potentiates insulin secretory responses of rats, J. Biochem 83: 295–303.PubMedGoogle Scholar
  10. 10.
    Yajima, M., Hosoda, K., Kanbayashi, Y, Nakamura, T., Takahashi, I., and Ui, M., 1987b, Biological properties of islets-activating protein (IAP) purified from the culture medium of Bordetella pertussis, J. Biochem. 83: 305–312.Google Scholar
  11. 11.
    Rodbell, M., Birnbaumer, L., Pohl, S. L., and Krans, H. M. J., 1971, The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver, J. Biol. Chem. 246: 1877–1882.PubMedGoogle Scholar
  12. 12.
    Jakobs, K. H., Saur, W., and Schultz, G., 1978, Inhibition of platelet adenylate cyclase by epinephrine requires GTP, FEBS Lett. 85: 167–170.PubMedCrossRefGoogle Scholar
  13. 13.
    Hildebrandt, J. D., Hanoune, J., and Birnbaumer, L., 1982, Guanine nucleotide inhibition of cyc-S49 mouse lymphoma cell membrane adenylyl cyclase, J. Biol. Chem. 257: 14723–14725.PubMedGoogle Scholar
  14. 14.
    Micheli, R. H., 1975, Inositol phospholipids and cell surface receptor function. Biochem. Biophys. Acta 415: 81–147.Google Scholar
  15. 15.
    Creba, J. A., Downes, P., Hawkins, P. T., Brewster, G., Micheli, R. H., and Kirk, C. J., 1983, Rapid breakdown of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate in rat hepatocytes stimulated by vasopressin and other Ca-mobilizing hormones, Biochem. J. 212: 733–747.PubMedGoogle Scholar
  16. 16.
    Griffin, H. D., Hawthorne, J. N., and Sykes, M., 1979, A calcium requirement for the phosphatidylinositol response following activation of presynaptic muscarinic receptors, Biochem. Pharmacol. 28: 1143–1147.PubMedCrossRefGoogle Scholar
  17. 17.
    Hokin, L. E., and Hokin, M. R., 1956, The actions of pancreozymin in pancreas slices and the role of phospholipids in enzyme secretion, J. Physiol. 132: 442–453.PubMedGoogle Scholar
  18. 18.
    Hokin, L. E., and Hokin, M. R., 1958a, Phosphoinositides and protein secretion in pancreas slices, J. Biol. Chem. 233: 805–810.PubMedGoogle Scholar
  19. 19.
    Hokin, M. R., and Hokin, L. E., 1958b, Enzyme secretion and the incorporation of 32P into phospholipids of pancreas slices, J. Biol. Chem. 233: 967–977.Google Scholar
  20. 20.
    Fain, J. N., and García-Sainz, J. A., 1980, Role of phosphatidylinositol turnover in α 1 and of adenylate cyclase inhibition in α2 effects of catecholamines. Life Sci. 26: 1183–1194.PubMedCrossRefGoogle Scholar
  21. 21.
    Ullrich, S., and Wollheim, C., 1985, Expression of both βr and β2- adrenoceptors in an insulin-secreting cell line: Parallel studies of cytosolic free Ca2+ and insulin release, Mol. Pharmacol. 28(2): 100–106.PubMedGoogle Scholar
  22. 22.
    . Farese, R. V., Sabir, M. A., and Vandor, S. L., 1979, Adrenocorticotropin acutely increases adrenal phosphoinositides, J. Biol. Chem.254: 6842–6844.PubMedGoogle Scholar
  23. 23.
    Prentki, M., and Wollheim, C. B., 1984, Cytosolic free Ca2+ in insulin-secreting cells and its regulation by isolated organelles, Experientia 40(10): 1052–1060.PubMedCrossRefGoogle Scholar
  24. 24.
    Vergara, J., Tsien, R., and Delay, M., 1985, Inositol 1,4,5-trisphosphate: A possible chemical link in excitation-contraction coupling in muscle, Proc. Natl. Acad. Sci. USA 82(18): 6352–6356.PubMedCrossRefGoogle Scholar
  25. 25.
    Berridge, M. J., and Irvine, R. F., 1984, Inositol trisphosphate, a novel second messenger in cellular signal transduction, Nature 312: 315–321.PubMedCrossRefGoogle Scholar
  26. 26.
    Tyson, C. A., Vande-Zande, H., and Green, D. E., 1976, Phospholipids as ionophores, J. Biol. Chem. 251: 1326–1332.PubMedGoogle Scholar
  27. 27.
    Takai, Y., Kishimoto, A., Kikkawra, U., Mori, T., and Nishizuka, Y., 1979, Unsaturated di-acylglycerol as a possible messenger for the activation of calcium-activated, phospholipid-dependent protein kinase system, Biochem. Biophys. Res. Commun. 91: 1218–1224.PubMedCrossRefGoogle Scholar
  28. 28.
    Bergman, E. N., and Miller, R. E., 1973, Direct enhancement of insulin secretion by vagal stimulation of the isolated pancreas, Am. J. Physiol. 236: E139-E146.Google Scholar
  29. 29.
    Porte, J., D. Girardier, L. Seydoux, J. Kanazawa, Y, and Posteraak, J., 1973, Neural regulation of insulin secretion in the dog, J. Clinical Investigation 52: 210–214.CrossRefGoogle Scholar
  30. 30.
    Milner, R. D. G., and Hales, C. N., 1968, The interaction of various inhibitors and stimuli of insulin release studied with rabbit pancreas in vitro, Biochemical J. 113: 472–479.Google Scholar
  31. 31.
    Lerner, R. L., and Porte, Jr., D., 1971, Epinephrine: Selective inhibition of the acute insulin response to glucose, J. Clinical Investigation 50: 2453–2457.CrossRefGoogle Scholar
  32. 32.
    Sorenson, R. L., Eide, R. P., and Seybold, V., 1979, Effect of norepinephrine on insulin, glucagon, and somatostatin secretion in isolated perifused rat islets, Diabetes 28: 899–904.PubMedCrossRefGoogle Scholar
  33. 33.
    Gagerman, E., Idahl, L.-A., Meissner, H. P., and Táljedal, I.-B., 1978, Insulin release, cGMP, cAMP, and membrane potential in acetylcholine-stimulated islets, Am. J. Physiol. 4: E493-E500.Google Scholar
  34. 34.
    Wollheim, C. B., and Sharp, G. W. G., 1981, Regulation of insulin release by calcium, Physiol. Rev. 61: 914–973.PubMedGoogle Scholar
  35. 35.
    Best, L., and Malaisse, W. J., 1983, Stimulation of phosphoinositide breakdown in rat pancreatic islets by glucose and carbamylcholine, Biochem. Biophys. Res. Commun. 116(1): 9–16.PubMedCrossRefGoogle Scholar
  36. 36.
    Best, L., and Malaisse, W. J., 1984, Nutrient and hormone-neurotransmitter stimuli induce hydrolysis of polyphosphoinositides in rat pancreatic islets, Endocrinology 115(5): 1814–1820.PubMedCrossRefGoogle Scholar
  37. 37.
    Dunlop, M., Shaw, M., Dimitriadis, E., Gurtler, V., Wark, J., and Larkins, R. G., 1988, Evidence that muscarinic receptors in islet cells are not coupled functionally to adenylate cyclase through the inhibitory guanine nucleotide binding protein (Ni), Horm. Metab. Res. 20(3): 150–153.PubMedCrossRefGoogle Scholar
  38. 38.
    Mathias, P. C., Best, L., and Malaisse, W. J., 1985, Stimulation by glucose and carbamylcholine of phospholipase-C in pancreatic islets, Cell. Biochem. Funct. 3(3): 173–177.PubMedCrossRefGoogle Scholar
  39. 39.
    Rubin, R. P., 1982, Calcium and Cellular Function. Plenum, New York.Google Scholar
  40. 40.
    Dean, P. M., and Matthews, E. K., 1970, Glucose-induced electrical activity in pancreatic islet cells, J. Physiol. 210: 255–264.PubMedGoogle Scholar
  41. 41.
    Meissner, H. P., and Schmelz, H., 1974, Membrane potential of β-cells in pancreatic islets, Pfluegers Arch. 351: 195–206.CrossRefGoogle Scholar
  42. 42.
    Matthews, E. K., and Sakamoto, Y, 1975, Electrical characteristics of pancreatic islet cells, J. Physiol. 246 : 421–437.PubMedGoogle Scholar
  43. 43.
    Atwater, I., Dawson, C. M., Eddlestone, G. T., and Rojas, E., 1981, Voltage noise measurements across the pancreatic β-cell membrane: Calcium channel characteristics, J. Physiol. 314: 195–212.PubMedGoogle Scholar
  44. 44.
    Meissner, H. P., and Preissler, M., 1980, Ionic mechanisms of the glucose-induced membrane potential changes in β-cells, Horm. Metab. Res. (Suppl.) 10: 91–99.Google Scholar
  45. 45.
    Ribalet, B., and Beigelman, P. M., 1980, Calcium action potentials and potassium permeability activation in pancreatic β-cells, Am. J. Physiol. 239: C124-C133.PubMedGoogle Scholar
  46. 46.
    Atwater, I., Ribalet, B., and Rojas, E., 1978, Cyclic changes in potential and resistance of the ß-cell membrane induced by glucose in islets of Langerhans from mouse, J. Physiol. 278: 117–139.PubMedGoogle Scholar
  47. 47.
    Atwater, I., Ribalet, B., and Rojas, E., 1979, Mouse pancreatic ß-cells: Tetraethylammonium blockage of the potassium permeability increase induced by depolarization, J. Physiol. 288:561–574.PubMedGoogle Scholar
  48. 48.
    Atwater, I., Dawson, C. M., Ribalet, B., and Rojas, E., 1979, Potassium permeability activated by intracellular calcium ion concentration in the pancreatic β-cell, J. Physiol. 288: 575–588.PubMedGoogle Scholar
  49. 49.
    Atwater, I., Dawson, C. M., Scott, A., Eddlestone, G., and Rojas, E., 1980, The nature of the oscillatory behavior in electrical activity from pancreatic β-cell, Horm. Metab. Res. (Suppl.) 10: 100–107.Google Scholar
  50. 50.
    Atwater, I., Carroll, P., and Li, M. X., 1989, Electrophysiology of the pancreatic β-cell, in: Molecular and Cellular Biology of Diabetes Mellitus (B. Draznin, S. Melmed, and D. Le Roith, eds.), Volume 1, pp. 49–68.Google Scholar
  51. 51.
    Santos, R. M, and Rojas, E., 1989, Muscarinic receptor modulation of glucose-induced electrical activity in mouse pancreatic β-cells, FEBS Lett. 249: 411–417.PubMedCrossRefGoogle Scholar
  52. 52.
    Birdsall, N. J. M., Hulme, E. C., and Stockton, J. M., 1983, Muscarinic receptor heterogeneity, in: Proc. International Symposium on Subtypes of Muscarinic Receptors (B.I. Hirschowitz, R. Hammer, A. Giachetti, J. K. Keirns, and R. R. Levine, eds.), Supplement to Trends in Pharmacological Sciences, pp. 4–8.Google Scholar
  53. 53.
    Watson, M., Vickrpy, T. W., Roeske, W. R., and Yamamura, H. I., 1983, Subclassification of muscarinic receptors based upon the selective antagonist pirenzepine, in: Proc. International Symposium on Subtypes of Muscarinic Receptors (B.I. Hirschowitz, R. Hammer, A. Giachetti, J. K. Keirns, and R. R. Levine, eds.), Supplement to Trends in Pharmacological Sciences, pp. 9–11.Google Scholar
  54. 54.
    Mitchelson, F., 1983, Heterogeneity in muscarinic receptors: Evidence from pharmacological studies with antagonists, in: Proc. International Symposium on Subtypes of Muscarinic Receptors (B.I. Hirschowitz, R. Hammer, A. Giachetti, J. K. Keirns, and R. R. Levine, eds.), Supplement to Trends in Pharmacological Sciences, pp. 12–16.Google Scholar
  55. 55.
    Adams, P. R., and Brown, D. A., 1982, Synaptic inhibition of the M-current: Slow excitatory postsynaptic potential mechanism in bullfrog sympathetic neurons, J. Physiol. 332: 263–272.PubMedGoogle Scholar
  56. 56.
    Hashiguchi, T., Kobayashi, H., Tosaka, T., and Libet, B., 1982, Two muscarinic depolarizing mechanisms in mammalian sympathetic neurones, Brain Res. 242: 378–382.PubMedCrossRefGoogle Scholar
  57. 57.
    Jones, S. W., 1985, Muscarinic and peptidergic excitation of bullfrog sympathetic neurons, J. Physiol. 366: 63–87.PubMedGoogle Scholar
  58. 58.
    Kawatani, M., Rutigliano, M., and Degroat, W. C., 1985, Depolarization and muscarinic excitation induced in a sympathetic ganglion by vasoactive intestinal polypeptide, Science 229: 879–881.PubMedCrossRefGoogle Scholar
  59. 59.
    Kuffler, S. W., and Selnowski, T. J., 1983, Peptidergic and muscarinic excitation at amphibian synapses, J. Physiol. 341: 257–218.PubMedGoogle Scholar
  60. 60.
    Santana de Sa, S, Ferrer, R., Rojas, E., and Atwater, I., 1983, Effects of adrenaline and noradrenaline on glucose-induced electrical activity of mouse pancreatic β-cell, Quar. J. Phys. 8: 247–258.Google Scholar
  61. 61.
    Takai, A., and Tornita, T., 1980, Effects of quinine on the α-action of adrenaline in the guinea pig Taenia coli, J. Physiol. 308: 54–55P.Google Scholar
  62. 62.
    Rojas, E., Pollard, H. B., and Heldman, E., 1985, Real-time measurements of acetylcholine-induced release of ATP from bovine medullary chromaffin cells, FEBS Lett. 185: 323–327.PubMedCrossRefGoogle Scholar
  63. 63.
    Oka, M., Isosaki, M., and Watanabe, J., 1980, Calcium flux and catecholamine release in isolated bovine adrenal medullary chromaffin cells: Effects of nicotinic and muscarinic stimulation, Adv. Biosci. 36: 29–33.Google Scholar
  64. 64.
    Prentki, M., Biden, T. J., Danjicc, D., Irvine, R. F., Berridge, M. J., and Wollheim, C. B., 1984, Rapid mobilization of Ca from rat insulinoma microsomes by inositol-l,4,5-trisphosphate, Nature 309: 562–565.PubMedCrossRefGoogle Scholar
  65. 65.
    Forsberg, E. J., Rojas, E., and Pollard, H. B., 1986, Muscarinic receptor enhancement of nicotine-induced catecholamine secretion may be mediated by phosphoinositide metabolism in bovine adrenal chromaffin cells, J. Biol. Chem. 261(11): 4915–4920.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Eduardo Rojas
    • 1
  • Rosa M. Santos
    • 1
  • Illani Atwater
    • 1
  1. 1.Laboratory of Cell Biology and Genetics, National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaUSA

Personalised recommendations