Transduction, Signal Transference, and Encoding in Composite Chemoreceptors: A Comparison between Gustatory and Arterial Chemoreceptors

  • Patricio Zapata
Part of the Series of the Centro de Estudios Científicos de Santiago book series (SCEC)


The chemoreceptor organs are specialized to detect the steady levels and changes in the concentration of chemical constituents in external or internal environments. The receptor sites may be located either on the membrane of neurons themselves (simple or primary receptors) or on specialized receptor cells (composite or secondary receptors). In this last case, stimuli do not act on components of primary sensory neurons, but require the intervention of epithelioid receptor cells as transducer elements and of receptoneural synapses for the signal transference from those cells to the sensory endings of afferent neurons.


Carotid Body Taste Cell Glomus Cell Sensory Nerve Ending Sustentacular Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Donoso, A., and Zapata, P., 1976, Effects of denervation and decentralization upon taste buds, Experientia 32: 591–592.PubMedCrossRefGoogle Scholar
  2. 2.
    De Castro, F., 1926, Sur la structure et l’innervation de la glande intercarotidienne (glomus car-oticum) de l’homme et des mammifères, et sur un nouveau système d’innervation autonome du nerf glossopharyngien, Trab. Lab. Invest. Biol. Univ. Madrid 24: 365–432.Google Scholar
  3. 3.
    Eyzaguirre, C., and Zapata, P., 1984, Perspectives in carotid body research, J. Appl. Physiol. 57: 931–957.PubMedGoogle Scholar
  4. 4.
    Hess, A., and Zapata, P., 1972, Innervation of the cat carotid body: Normal and experimental studies, Fed. Proc. 31: 1365–1382.PubMedGoogle Scholar
  5. 5.
    Biscoe, T. J., Lall, A., and Sampson, S. R., 1970, Electron microscopic and electrophysiological studies on the carotid body following intracranial section of the glossopharyngeal nerve, J. Physiol. 208: 133–152.PubMedGoogle Scholar
  6. 6.
    Fidone, S. J., Zapata, P., and Stensaas, L. J., 1977, Axonal transport of labeled material into sensory nerve endings of cat carotid body, Brain Res. 124: 9–28.PubMedCrossRefGoogle Scholar
  7. 7.
    Smith, P. G., and Mills, E., 1979, Physiological and ultrastructural observations on regenerated carotid sinus nerves after removal of the carotid bodies in cats, Neuroscience 4:2009–2020.PubMedCrossRefGoogle Scholar
  8. 8.
    Verna, A., Roumy, M., and Leitner, L. M., 1975, Loss of chemoreceptive properties of the rabbit carotid body after destruction of the glomus cells, Brain Res. 100: 13–23.PubMedCrossRefGoogle Scholar
  9. 9.
    Zapata, P., Stensaas, L. J., and Eyzaguirre, C., 1976, Axon regeneration following a lesion of the carotid nerve: electrophysiological and ultrastructural observations, Brain Res. 113: 235–253.PubMedCrossRefGoogle Scholar
  10. 10.
    Monti-Bloch, L., Stensaas, L. J., and Eyzaguirre, C., 1983, Carotid body grafts induce chemosen-sitivity in muscle nerve fibers of the cat, Brain Res. 270: 77–92.PubMedCrossRefGoogle Scholar
  11. 11.
    Sato, T., 1980, Recent advances in the physiology of taste cells, Progr. Neurobiol. 14: 25–67.CrossRefGoogle Scholar
  12. 12.
    Eyzaguirre, C., Fidone, S. J., and Zapata, P., 1972, Membrane potentials changes recorded from the mucosa of the toad’s tongue during chemical stimulation, J. Physiol. 221: 515–532.PubMedGoogle Scholar
  13. 13.
    Stensaas, L. J., 1971, The fine structure of fungiform papillae and epithelium of the tongue of a South American toad, Calyptocephalella gayi, Am. J. Anat. 131: 443–462.CrossRefGoogle Scholar
  14. 14.
    Okada, Y., Miyamoto, T., and Sato, T., 1988, Ionic mechanisms of generation of receptor potential in response to quinine in frog taste cell, Brain Res. 450: 295–302.PubMedCrossRefGoogle Scholar
  15. 15.
    Roper, S., 1983, Regenerative impulses in taste cells, Science 220: 1311–1312.PubMedCrossRefGoogle Scholar
  16. 16.
    Teeter, J., 1987, Quasi-regenerative responses to chemical stimuli in in vivo taste cells of the mudpuppy, Ann. N. Y. Acad. Sci. 510: 652–654.CrossRefGoogle Scholar
  17. 17.
    Teeter, J., Funakoshi, M., Kurihara, K., Roper, S., Sato, T, and Tonosaki, K., 1987, Generation of the taste cell potential, Chem. Senses 12: 217–234.CrossRefGoogle Scholar
  18. 18.
    Kinnamon, S. C., and Roper, S.D., 1987, Voltage-dependent ionic currents in dissociated mudpuppy taste cells, Ann. N. Y. Acad. Sci. 510: 413–416.CrossRefGoogle Scholar
  19. 19.
    Kinnamon, S. C., and Roper, S. D., 1988, Membrane properties of isolated mudpuppy taste cells, J. Gen. Physiol. 91: 351–371.PubMedCrossRefGoogle Scholar
  20. 20.
    Kinnamon, S. C., Dionne, V. E., and Beam, K. G., 1988, Apical localization of K+ channels in taste cells provides the basis for sour taste transduction, Proc. Natl. Acad. Sci. USA. 85: 7023–7027.PubMedCrossRefGoogle Scholar
  21. 21.
    Avenet, P., and Lindemann, B., 1987, Patch-clamp study of isolated taste receptor cells of the frog, J. Membr. Biol. 97: 223–240.PubMedCrossRefGoogle Scholar
  22. 22.
    Yang, J., and Roper, S.D., 1987, Dye-coupling in taste buds in the mudpuppy, Necturus maculosus, J. Neurosci. 7: 3561–3565.Google Scholar
  23. 23.
    Soeda, H., Sakudo, F., and Noda, K., 1985, Relation between translingual potential changes induced by NaCl in the bullfrog tongue and taste nerve activity, Jap. J. Physiol. 35: 1101–1105.CrossRefGoogle Scholar
  24. 24.
    Simon, S. A., Robb, R., and Garvin, J. L., 1986, Epithelial responses of rabbit tongues and their involvement in taste transduction, Am. J. Physiol. 251: R598-R608.PubMedGoogle Scholar
  25. 25.
    Murayama, N., 1988, Interaction among different sensory units within a single fungiform papilla in the frog tongue, J. Gen. Physiol. 91: 685–701.PubMedCrossRefGoogle Scholar
  26. 26.
    Borg, G., Diamant, H., Ström, L., and Zotterman, Y., 1967, The relation between neural and perceptual intensity: A comparative study on the neural and psychophysical responses to taste stimuli, J. Physiol. 192: 13–20.PubMedGoogle Scholar
  27. 27.
    Morimoto, K., and Sato, M., 1982, Role of monoamines in afferent synaptic transmission in frog taste organ, Jap. J. Physiol. 32: 855–871.CrossRefGoogle Scholar
  28. 28.
    Nagahama, S., and Kurihara, K., 1985, Norepinephrine as a possible transmitter involved in synaptic transmission in frog taste organs and Ca dependence on its release, J. Gen. Physiol. 85: 431–442.PubMedCrossRefGoogle Scholar
  29. 29.
    Eyzaguirre, C., Baron, M., Hayashida, Y., Monti-Bloch, L., and Gallego, R., 1980, Effects of different stimuli on the glomus cell membrane, Adv. Physiol. Sci. 10: 399–408.Google Scholar
  30. 30.
    Oyama, Y., Walker, J. L., and Eyzaguirre, C., 1986, The intracellular chloride activity of glomus cells in the isolated rabbit carotid body, Brain Res. 368: 167–169.PubMedCrossRefGoogle Scholar
  31. 31.
    Hee, S. F., Wei, J. Y., and Eyzaguirre, C., 1988, Intracellular pH and some membrane characteristics of cultured carotid body cells, 9th International Symposium on Arterial Chemoreceptors, Park City, Abstract, p. 41.Google Scholar
  32. 32.
    Hayashida, Y., and Eyzaguirre, C., 1979, Voltage noise of carotid-body type I cells, Brain Res. 167: 189–194.PubMedCrossRefGoogle Scholar
  33. 33.
    Monti-Bloch, L., Abudara, V, and Clavijo, J., 1988, Electric communications between glomus cells of the rat carotid body, 9th International Symposium on Arterial Chemoreceptors, Park City, Abstract, p. 59.Google Scholar
  34. 34.
    Duchen, M. R., Caddy, K. W. T, Kirby, G. C., Patterson, D. L., Ponte, J., and Biscoe, T J., 1988, Biophysical studies of the cellular elements of the rabbit carotid body, Neuroscience 26: 291–311.PubMedCrossRefGoogle Scholar
  35. 35.
    Lopez-Barneo, J., Lopez-Lopez, J. R., Urena, J., and Gonzalez, C., 1988, Chemotransduction in the carotid body: K+ current modulated by p02 in type I chemoreceptor cells, Science 241: 580–582.PubMedCrossRefGoogle Scholar
  36. 36.
    Delpiano, M. A., Hescheler, J., and Acker, H., 1988, Evidence for O2-sensitive ionic channels in carotid body type-I cells, Physiologist 31: A172.Google Scholar
  37. 37.
    Eyzaguirre, C., and Zapata, P., 1968, The release of acetylcholine from carotid body tissues. Further study on the effects of ACh and cholinergic blocking agents on the chemosensory discharge, J. Physiol. 195:589–607.PubMedGoogle Scholar
  38. 38.
    Fidone, S. J., Stensaas, L. J., and Zapata, P., 1983, Sites of synthesis, storage, release and recognition of biogenic amines in carotid bodies, in: Physiology of the Peripheral Arterial Chemoreceptors (H. Acker and R. G. O’Regan, eds.), Elsevier/North-Holland, Amsterdam, pp. 21–44.Google Scholar
  39. 39.
    Wang, Z. Z., Dinger, B., Fidone, S., and Stensaas, L. J., 1988, The localization and coexistence of biogenic amines and neuropeptides in carotid body type I cells, 9th International Symposium on Arterial Chemoreceptors, Park City, Abstract, p. 13.Google Scholar
  40. 40.
    Zapata, P., 1975, Effects of dopamine on carotid chemo- and baroreceptors in vitro, J. Physiol. 244: 235–251.PubMedGoogle Scholar
  41. 41.
    Liados, F., and Zapata, P., 1978, Effects of dopamine analogues and antagonists on carotid body chemosensors in situ, J. Physiol. 274: 487–499.Google Scholar
  42. 42.
    Nishi, K., and Stensaas, L. J., 1974, The ultrastructure and source of nerve endings in the carotid body, Cell Tissue Res. 154: 303–319.PubMedCrossRefGoogle Scholar
  43. 43.
    Hayashida, Y., Koyano, H., and Eyzaguirre, C., 1980, An intracellular study of chemosensory fibers and endings, J. Neurophysiol. 44: 1077–1088.PubMedGoogle Scholar
  44. 44.
    Zapata, P., and Eyzaguirre, C., 1985, Bioelectric potentials in the carotid body, Brain Res. 331: 39–50.PubMedCrossRefGoogle Scholar
  45. 45.
    Belmonte, C., and Gallego, R., 1983, Membrane properties of cat sensory neurons with chemoreceptor and baroreceptor endings, J. Physiol. 342: 603–614.PubMedGoogle Scholar
  46. 46.
    Arvidson, K., and Friberg, U., 1980, Human taste: Response and taste bud number in fungiform papillae, Science 209: 807–808.PubMedCrossRefGoogle Scholar
  47. 47.
    Scott, T. R., and Chang, F. C. T., 1984, The state of gustatory neural coding, Chem. Senses 8: 297–314.CrossRefGoogle Scholar
  48. 48.
    Alcayaga, J., Iturriaga, R., and Zapata, P., 1986, Carotid body chemoreceptor excitation produced by carotid occlusion, Acta Physiol. Pharmacol. Latinoam. 36: 199–215.PubMedGoogle Scholar
  49. 49.
    Alcayaga, J., Iturriaga, R., and Zapata, P., 1988, Flow-dependent chemosensory activity in the carotid body superfused in vitro, Brain Res. 455: 31–37.PubMedCrossRefGoogle Scholar
  50. 50.
    Nolan, W. F., Donnelly, D. F., Smith, E. J., and Dutton, R. E., 1984, Nonrandom chemoreceptor activity during superfusion in vitro, Brain Res. 292: 194–197.PubMedCrossRefGoogle Scholar
  51. 51.
    Serani, A., and Zapata, P., 1981, Relative contribution of carotid and aortic bodies to cyanide-induced ventilatory responses in the cat, Arch. Int. Pharmacodyn. Thér. 252: 284–297.PubMedGoogle Scholar
  52. 52.
    Serani, A., Lavados, M., and Zapata, P., 1983, Cardiovascular responses to hypoxia in the spontaneously breathing cat: Reflexes originating from carotid and aortic bodies, Arch. Biol. Med. Exp. 16: 29–41.PubMedGoogle Scholar
  53. 53.
    Iturriaga, R., Alcayaga, J., and Zapata, P., 1988, Contribution of carotid body chemoreceptors and carotid sinus baroreceptors to the ventilatory and circulatory reflexes produced by common carotid occlusion, Acta Physiol. Pharmacol. Latinoam. 38: 27–48.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Patricio Zapata
    • 1
  1. 1.Laboratorio de NeurobiologíaUniversidad Católica de ChileSantiagoChile

Personalised recommendations