A Complex Regulation of the cGMP-Dependent Channels of Retinal Rod Membranes by the cGMP Phosphodiesterase

  • Michele Ildefonse
  • Nelly Bennett
  • Serge Crouzy
  • Yves Chapron
  • Armel Clerc
Part of the Series of the Centro de Estudios Científicos de Santiago book series (SCEC)


Photoexcitation induces a hyperpolarization of the plasma membrane of the rod outer segment, and it is now clearly established that this hyperpolarization results from a decrease of cGMP* concentration which directly regulates the opening of sodium channels of this membrane (see Haynes and Yau, Chapter 3 in this volume, and Hanke and Simmoteit, Chapter 4 in this volume; for a review, see Pugh and Cobbs(1)). cGMP-dependent sodium channels are also present in the membranes of the disks.(2–7)


Sodium Channel Disk Membrane Elementary Conductance Amplitude Histogram cGMP Phosphodiesterase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pugh, E. N., Jr., and Cobbs, W. H., 1986, Visual transduction in vertebrate rods and cones: a tale of two transmitters: calcium and cGMP, Vision Res. 26: 1613–1643.PubMedCrossRefGoogle Scholar
  2. 2.
    Caretta, A., and Cavaggioni, A., 1983, Fast ionic flux activated by cGMP in the membrane of cattle rod outer segments, Eur. J. Biochem. 132: 1–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Koch, K. W., and Kaupp, U. B., 1985, Cyclic-GMP directly regulates a conductance in membranes of bovine rods by a cooperative mechanism, J. Biol. Chem. 260: 6788–6800.PubMedGoogle Scholar
  4. 4.
    Puckett, K. L., and Goldin, S. M., 1986, Guanosine 3′,5′-cyclic-monophosphate stimulates release of actively accumulated calcium in purified disks from rod outer segments of bovine retina, Biochemistry 25: 1739–1746.PubMedCrossRefGoogle Scholar
  5. 5.
    Schnetkamp, P. P. M., and Bownds, M. D., 1987, Na+ and cGMP-induced Ca2+ fluxes in frog rod photoreceptors, J. Gen. Physiol. 89: 481–500.PubMedCrossRefGoogle Scholar
  6. 6.
    Matesic, D., and Liebman, P. A., 1987, cGMP-dependent cation channel of retinal rod outer segments, Nature (London) 326: 600–603.Google Scholar
  7. 7.
    Cook, N. J., Hanke, W., and Kaupp, U. B., 1987, Identification, purification, and functional reconstitution of the cGMP-dependent channel from rod photoreceptors, Proc. Natl. Acad. Sci. USA. 84: 585–589.PubMedCrossRefGoogle Scholar
  8. 8.
    Tanaka, J. C., Furman, R. E., Cobbs, W. H., and Mueller, P., 1987, Incorporation of a retinal rod cGMP-dependent conductance into planar bilayers, Proc. Natl. Acad. Sci. USA. 84: 724–728.PubMedCrossRefGoogle Scholar
  9. 9.
    Hanke, W., Cook, N. J., and Kaupp, U. B., 1988, cGMP-dependent channel protein from photoreceptor membranes: Single-channel activity of the purified and reconstituted protein, Proc. Natl. Acad. Sci. USA. 85: 94–98.PubMedCrossRefGoogle Scholar
  10. 10.
    Haynes, L. W., Kay, A. R., and Yau, K.-W., 1986, Single cyclic-GMP-activated channel activity in excised patches of rod outer segment membrane, Nature (London) 321: 66–70.CrossRefGoogle Scholar
  11. 11.
    Zimmerman, A. L., and Baylor, D. A., 1986, Cyclic-GMP-sensitive conductance of retinal rods consists of aqueous pores, Nature 321: 70–72.PubMedCrossRefGoogle Scholar
  12. 12.
    Miller, C., 1978, Voltage-gated cation channel from fragmented sarcoplasmic reticulum: Steady-state electrical properties, J. Membr. Biol. 40: 1–23.PubMedGoogle Scholar
  13. 13.
    Matthews, G., 1987, Single-channel recordings demonstrate that cGMP opens the light-sensitive ion channel of the rod photoreceptor, Proc. Natl. Acad. Sci. USA. 84: 299–302.PubMedCrossRefGoogle Scholar
  14. 14.
    Brown, A. M., and Birnbaumer, L., 1988, Direct G-protein gating of ion channels, Am. J. Physiol. 254: H401-H410.PubMedGoogle Scholar
  15. 15.
    Bennett, N., 1986, A functional link between the dark Mg-ATPase activity and the light-induced enzymatic cascade in rod outer segment, Eur. J. Biochem. 157: 487–495.PubMedCrossRefGoogle Scholar
  16. 16.
    Uhl, R., Borys, T., and Abrahamson, E. W., 1979, Evidence for structural changes in the photoreceptor disk membrane enabled by magnesium ATPase activity and triggered by light, FEBS Lett. 107: 317–322.PubMedCrossRefGoogle Scholar
  17. 17.
    Kuhn, H., Bennett, N., Michel-Villaz, M., and Chabre, M., 1981, Interactions between photoex-cited rhodopsin and GTP-binding protein: Kinetic and stoichiometric analyses from light-scattering changes, Proc. Natl. Acad. Sci. USA 78: 6873–6877.PubMedCrossRefGoogle Scholar
  18. 18.
    Bennett, N., and Dupont, Y., 1985, The G-protein of retinal rod outer segments (transducin): Mechanism of interaction with rhodopsin and nucleotides, J. Biol. Chem. 260: 4156–4168.PubMedGoogle Scholar
  19. 19.
    Yau, K.-W., and Nakatani, K., 1985, Light-induced reduction of cytoplasmic free calcium in retinal rod outer segment, Nature (London) 313: 579–582.CrossRefGoogle Scholar
  20. 20.
    Torre, V., Matthews, H. R., and Lamb, T. D., 1986, Role of calcium in regulating the cyclic-GMP cascade of phototransduction in retinal rods, Proc. Natl. Acad. Sci. USA. 83: 7109–7113.PubMedCrossRefGoogle Scholar
  21. 21.
    McNaughton, P. A., Cervetto, L., and Nunn, B. J., 1986, Measurement of the intracellular free calcium concentration in salamander rods, Nature (London) 322: 261–263.CrossRefGoogle Scholar
  22. 22.
    Pepe, I. M., Panafoli, I., and Cugnoli, C., 1986, Guanylate cyclase in rod outer segments of the toad retina: Effect of light and calcium, FEBS Lett. 203: 73–76.PubMedCrossRefGoogle Scholar
  23. 23.
    Kondo, H., and Miller, W. H., 1988, Rod light adaptation may be mediated by acceleration of the phosphodiesterase-guanylate cyclase cycle, Proc. Natl. Acad. Sci. USA. 85: 1322–1326.PubMedCrossRefGoogle Scholar
  24. 24.
    Laemmli, U. K., 1970, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature (London) 227: 680–685.CrossRefGoogle Scholar
  25. 25.
    Kuhn, H., 1985, Interaction between photoexcited rhodopsin and light-activated enzymes in rods, in: Progress in Retinal Research, Vol. 3 (N. Osborne and J. Chader, eds.) Pergamon, New York, pp. 123–156.Google Scholar
  26. 26.
    Baehr, W., Devlin, M. J., and Applebury, M. L., 1979, Isolation and characterization of cGMP phosphodiesterase from bovine rod outer segments, J. Biol. Chem. 254: 11669–11677.PubMedGoogle Scholar
  27. 27.
    Baehr, W., Morita, E. A., Swanson, R. J., and Applebury, M. L., 1982, Characterization of bovine rod outer segment G-protein, J. Biol. Chem. 257: 6452–6460.PubMedGoogle Scholar
  28. 28.
    Bradford, M. M., 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72: 248–254.PubMedCrossRefGoogle Scholar
  29. 29.
    Liebman, P. A., and Evanczuk, A. T., 1982, Real-time assay of rod disk membrane cGMP phosphodiesterase and its controller enzymes, Methods Enzymol. 81: 532–542.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Michele Ildefonse
    • 1
  • Nelly Bennett
    • 1
  • Serge Crouzy
    • 1
  • Yves Chapron
    • 1
  • Armel Clerc
    • 1
  1. 1.Laboratoire Biophysique Moléculaire et CellulaireCentre d’Etudes Nucléaires de GrenobleGrenoble CedexFrance

Personalised recommendations