Advertisement

Functional Aspects of the cGMP-Activated Channel from Bovine Rod Outer Segments

  • W. Hanke
  • R. Simmoteit
Part of the Series of the Centro de Estudios Científicos de Santiago book series (SCEC)

Abstract

The cGMP-activated channel of the plasma membrane of bovine rod outer segments is responsible for the change of the electrical potential of this membrane,1) which occurs after the absorption of light by rhodopsin in the disk membrane. The plasma membrane hyperpolarizes due to the closing of such channels, when the cGMP concentration drops as a consequence of the activation of an enzyme cascade.

Keywords

Native Membrane Planar Lipid Bilayer Hill Plot cGMP Concentration Crude Membrane Preparation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baylor, D. A., and Fuortes, M. G. F., 1970, Electrical response of single cones in the retina of turtle, J. Physiol. (London) 207: 77–92.Google Scholar
  2. 2.
    Haynes, L. W., Kay, A. R., and Yau, K.-W., 1985, Single cyclic-GMP-activated channel activity in excised patches of rod outer segment membranes, Nature 321: 66–70.CrossRefGoogle Scholar
  3. 3.
    Cook, N. J., Hanke, W., and Kaupp, U. B., 1987, Identification, purification, and functional reconstitution of the cyclic-GMP-dependent channel from rod photoreceptors, Proc. Natl. Acad. Sci. USA. 84: 585–589.PubMedCrossRefGoogle Scholar
  4. 4.
    Hanke, W., Cook, N. J., and Kaupp, U. B., 1988, cGMP-dependent channel protein from photoreceptor membranes: Single-channel activity of the purified and reconstituted protein, Proc. Natl. Acad. Sci. USA. 85: 94–98.PubMedCrossRefGoogle Scholar
  5. 5.
    Kaupp, U. B., Hanke, W., Simmoteit, R., and Lühring, H., 1988, Electrical and biochemical properties of the cGMP-gated cation channel from rod photoreceptors, Cold Spring Harbor Symposia on Quantitative Biology Vol. LIII, 407–415.Google Scholar
  6. 6.
    Hanke, W., and Breer, H., 1989, Reconstitution of acetylcholine receptors in planar lipid bilayers, in: Molecular Enzymology (Harris and Etmadi, eds.), Plenum, New York 339–362.Google Scholar
  7. 7.
    Changeaux, J.-P., Devillers-Thiery, A., and Chemovilli, P., 1984, Acetylcholine receptor: An allosteric protein, Science 225: 1335–1345.CrossRefGoogle Scholar
  8. 8.
    Fesenko, E. E., Kolesnikov, S. S., and Lyubarsky, A. L., 1985, Induction by cyclic-GMP of cationic conductance in plasma membrane of retinal rod outer segments, Nature 313: 310–313.PubMedCrossRefGoogle Scholar
  9. 9.
    Bodoia, R. D., and Detwiler, P. B., 1985, Patch-clamp recordings of the light-sensitive dark noise in retinal rods from the lizard and frog, J. Physiol. (London) 367: 183–216.Google Scholar
  10. 10.
    Zimmerman, A. L., and Baylor, D. A., 1986, Cyclic-GMP-sensitive conductance of retinal rods consist of aqueous pores, Nature 321: 395–398.CrossRefGoogle Scholar
  11. 11.
    Hanke, W., 1985, Reconstitution of ion channels, CRC Crit. Rev. Biochem. 19: 1–44.PubMedCrossRefGoogle Scholar
  12. 12.
    Koch, K.-W., and Kaupp, U. B., 1985, Cyclic-GMP directly regulates a cation conductance in membranes of bovine rods by a cooperative mechanism, J.B.C. 260: 6788–6800.Google Scholar
  13. 13.
    Stern, J. H., Kaupp, U. B., and McLeish, P. R., 1986, Control of the light-regulated current in rod photoreceptors by cyclic-GMP, calcium and 1-cis Diltiazem, Proc. Natl. Acad. Sci. USA. 83: 1163–1167.PubMedCrossRefGoogle Scholar
  14. 14.
    Zimmerman, A. L., Yamanaka, G., Eckstein, F., Baylor, D. A., and Stryer, L., 1985, Interactions of hydrolysis-resistant analogs of cyclic-GMP with the phosphodiesterase and light-sensitive channel of retinal rod outer segments, Proc. Natl. Acad. Sci. USA. 82: 8813–8817.PubMedCrossRefGoogle Scholar
  15. 15.
    Karpen, J. W., Zimmerman, A. L., Stryer, L., and Balor, D. A., 1986, Gating kinetics of the cGMP-activated channel of retinal rods: Flash photolysis and voltage-jump studies, Proc. Natl. Acad. Sci. USA. 85: 1287–1291.CrossRefGoogle Scholar
  16. 16.
    Matesic, D., and Liebmann, P. A., 1987, cGMP-dependent cation channel of retinal rod outer segments, Nature 326: 600–603.Google Scholar
  17. 17.
    Stern, J. H., Knutsson, H., and MacLeish, P. R., 1987, Divalent cations directly affect the conductance of excised patches of rod photoreceptor membranes, Science 236: 1674–1678.PubMedCrossRefGoogle Scholar
  18. 18.
    Yau, K.-W., Haynes, L. W., and Nakatani, K., 1986, Roles of calcium and cGMP in visual transduction, in: Membrane Control of Cellular Activity (H. C. Lüttgau, ed.), G. Fischer, Stuttgart, pp. 343–366.Google Scholar
  19. 19.
    Hanke, W., and Breer, H., 1987, Characterization of the channel properties of a neuronal acetylcholine receptor reconstituted into planar lipid bilayers, J. Gen. Physiol. 90: 855–879.PubMedCrossRefGoogle Scholar
  20. 20.
    Hanke, W., 1986, Incorporation by fusion, in: Ion Channel Reconstitution (C. Miller, ed.), Plenum, New York, pp. 141–157.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • W. Hanke
    • 1
  • R. Simmoteit
    • 1
  1. 1.FB Biologie, BiophysikUniversität OsnabrückOsnabrückFederal Republic of Germany

Personalised recommendations