Calcium Channels in Sarcoplasmic Reticulum Membranes Isolated from Skeletal Muscle

  • Benjamin A. Suárez-Isla
  • Juan José Marengo
  • Verónica Irribarra
  • Ricardo Bull
Part of the Series of the Centro de Estudios Científicos de Santiago book series (SCEC)


Calcium channels have been detected in sarcoplasmic reticulum (SR) membranes isolated from rabbit(1,2) and frog(3–5) skeletal muscle. Several lines of evidence indicate that these conductances participate in calcium release during excitation-contraction coupling(1–6) High-conductance channels present in SR isolated from rabbit(1) and frog SR muscle(3–5) are activated by ATP and by calcium applied at the myoplasmic side, and are blocked by magnesium and ruthenium red(1,6) The channel present in SR membranes from frog is activated by micromolar concentrations of 1,4,5-inositol tri-sphosphate(4,5) a postulated internal agonist of excitation-contraction coupling. (7–10) This drug increases fractional open time (P 0) in a concentration-dependent manner without an effect on single-channel conductance. Gating and conductance of the same channel are modified by nanomolar concentrations of ryanodine(3,11) a plant alkaloid that elicits irreversible muscle contractures.


Sarcoplasmic Reticulum Ryanodine Receptor Frog Skeletal Muscle Fractional Open Time Sarcoplasmic Reticulum Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Smith, J. S., Coronado, R., and Meissner, G., 1985, Sarcoplasmic reticulum contains adenine nucleotide-activated calcium channels, Nature 316: 446–449.PubMedCrossRefGoogle Scholar
  2. 2.
    Suárez-Isla, B. A., Orozco, C., Heller, P. F., and Froehlich, J. P., 1986, Single calcium channels in native sarcoplasmic reticulum membranes from skeletal muscle, Proc. Natl. Acad. Sci. USA 83: 7741–7745.PubMedCrossRefGoogle Scholar
  3. 3.
    Irribarra, V., Bull, R., Oberhäuser, A., Marengo, J. J., and Suárez-Isla, B. A., 1988, Two types of calcium channels in frog sarcoplasmic reticulum (SR) membranes, Biophys. J. 53: 609a.CrossRefGoogle Scholar
  4. 4.
    Suárez-Isla, B. A., Irribarra, V., Oberhauser, A., Bull, R., Larralde, L., Jaimovich, E., and Hidalgo, C., 1988, Inositol 1,4,5-trisphosphate activates a calcium channel in isolated sarcoplasmic reticulum (SR) membranes, Biophys. J. 53: 467a.Google Scholar
  5. 5.
    Suárez-Isla, B. A., Irribarra, V., Oberhäuser, A., Bull, R., Larralde, L., Hidalgo, C., and Jaimovich, E., 1988, Inositol 1,4,5-trisphosphate activates a calcium channel in isolated sarcoplasmic reticulum (SR) membranes, Biophys. J. 54: 737–741.PubMedCrossRefGoogle Scholar
  6. 6.
    Smith, J. S., Coronado, R., and Meissner, G., 1986, Single-channel measurements of the calcium release channel from skeletal muscle sarcoplasmic reticulum: Activation by Ca2+ and ATP and modulation by mg2+, J. Gen. Physiol. 88: 573–588.PubMedCrossRefGoogle Scholar
  7. 7.
    Vergara, J., Tsien, R. Y., and Delay, M., 1985, Inositol 1,4,5-trisphosphate: A possible chemical link in excitation-contraction coupling in muscle, Proc. Natl. Acad. Sci. USA 82: 6352–6356.PubMedCrossRefGoogle Scholar
  8. 8.
    Vergara, J., and Delay, M., 1986, The measurement of a transmission delay and the effect of temperature at the coupling process of the triadic junction in skeletal muscle fibers, Proc. Roy. Soc. Lond. 229: 97–110.CrossRefGoogle Scholar
  9. 9.
    Vergara, J., Asotra, K., and Delay, M., 1987, A chemical link in excitation-contraction coupling in skeletal muscle, in: Cell Calcium and the Control of Membrane Transport (L. Mandel and D. C. Eaton, Eds.), pp. 133–151. Rockefeller University Press, New York.Google Scholar
  10. 10.
    Vergara, J., and Asotra, K., 1987, The chemical transmission mechanism of excitation-contraction coupling in skeletal muscle, News Physiol. Sci. 2: 182–186.Google Scholar
  11. 11.
    Bull, R., Marengo, J. J., Suárez-Isla, B. A., Donoso, P., Sutko, J. L., and Hidalgo, C., 1989, Activation of calcium channels in sarcoplasmic reticulum from frog muscle by nanomolar concentrations of ryanodine, Biophys. J. 56: 749–756.PubMedCrossRefGoogle Scholar
  12. 12.
    Ma, J., Fill, M., Knudson, M., Campbell, K. P., and Coronado, R., 1988, Ryanodine receptor of skeletal muscle is a gap junction-type channel, Science 242: 99–102.PubMedCrossRefGoogle Scholar
  13. 13.
    Oetiker, H., 1982, An appraisal of the evidence for a sarcoplasmic reticulum membrane potential and its relation to calcium release in skeletal muscle, J. Muscle Res. Cell Mot. 3: 247–272.CrossRefGoogle Scholar
  14. 14.
    Maylie, J., Irving, M., Sizto, N. L., Boyarsky, G., and Chandler, W. K., 1987, Calcium signals recorded from cut frog twitch fibers containing tetramethyl-murexide, J. Gen. Physiol. 89: 145–176.PubMedCrossRefGoogle Scholar
  15. 15.
    Miledi, R., Parker, I., and Zhu, P. H., 1982, Calcium transients evoked by action potentials in frog twitch muscle fibers, J. Physiol. 333: 655–679.PubMedGoogle Scholar
  16. 16.
    Eusebi, F., Miledi, R., and Takahashi, T., 1983, Aequorin-calcium transients in frog twitch muscle fibers, J. Physiol. 340: 91–106.PubMedGoogle Scholar
  17. 17.
    Volpe, P., Salviati, G., Di Virgilio, F., and Pozzan, T, 1985, Inositol 1,4,5-trisphosphate induces calcium release from sarcoplasmic reticulum of skeletal muscle, Nature 316: 347–349.PubMedCrossRefGoogle Scholar
  18. 18.
    Volpe, P., Di Virgilio, F., Pozzan, T., and Salviati, G., 1986, Role of inositol 1,4,5-trisphosphate in excitation-contraction coupling in skeletal muscle, FEBS Lett. 197: 1–4.PubMedCrossRefGoogle Scholar
  19. 19.
    Tsien, R. Y., and Rink, T. J., 1980, neutral carrier ion-selective microelectrodes for measurement of intracellular free calcium, Biochim Biophys. Acta 599: 623–638.Google Scholar
  20. 20.
    Sutko, J. L., Ito, K., and Kenyon, J. L., 1985, Ryanodine: A modifier of sarcoplasmic reticulum Ca2+ release in striated muscle, Federation Proc. 44: 2984–2988.Google Scholar
  21. 21.
    Katz, N. C., Ingénito, A., and Procita, L., 1970, Ryanodine-induced contractile failure of skeletal muscle, J. Pharmacol. Exp. Ther. 171: 242–248.PubMedGoogle Scholar
  22. 22.
    Inui, M., Saito, A., and Fleisher, S., 1987, Isolation of the ryanodine receptor from cardiac sarcoplasmic reticulum and identity with the feet structures, J. Biol. Chem. 262: 15637–15642.PubMedGoogle Scholar
  23. 23.
    Lattanzio, F. A., Schlatterer, R. G., Nicar, M., Campbell, K. P., and Sutko, J. L., 1987, The effects of ryanodine on passive calcium fluxes across sarcoplasmic reticulum membranes, J. Biol. Chem. 262: 2711–2718.PubMedGoogle Scholar
  24. 24.
    Lai, F. A., Erickson, H. P., Rousseau, E., Liu, Q. Y, and Meissner, G., 1988, Purification and reconstitution of the calcium release channel from skeletal muscle, Nature 331: 315–319.PubMedCrossRefGoogle Scholar
  25. 25.
    Campbell, K. P., Knudson, C. M., Imagawa, T, Leung, A. T, Sutko, J. L, Kahi, S. D., Reynolds, C. R., and Madson, T., 1987, Identification and characterization of the high-affinity [3H]ryanodine receptor of the junctional sarcoplasmic reticulum Ca2+ release channel, J. Biol. Chem. 262: 6460–6463.PubMedGoogle Scholar
  26. 26.
    Kawamoto, R. M., Brunschwig, J. P., Kim, K. C., and Caswell, A. H., 1986, Isolation characterization and localization of the spanning protein from skeletal muscle triads, J. Cell Biol. 103: 1405–1414.PubMedCrossRefGoogle Scholar
  27. 27.
    Franzini-Armstrong, C., 1970, Studies of the triad. I. Structure of the junction in frog twitch fibers, J. Cell Biol. 47: 488–499.PubMedCrossRefGoogle Scholar
  28. 28.
    Imagawa, T., Smith, J. S., Coronado, R., and Campbell, K. P., 1988, Purified ryanodine receptor from skeletal muscle sarcoplasmic reticulum is the Ca2+ -permeable pore of the calcium release channel, J. Biol. Chem. 262: 16636–16643.Google Scholar
  29. 29.
    Smith, J. S., Coronado, R., and Meissner, G., 1986, Single-channel calcium and barium currents of large and small conductance from sarcoplasmic reticulum, Biophys. J. 50: 921–928.PubMedCrossRefGoogle Scholar
  30. 30.
    Donaldson, S. K., Goldberg, N. D., Walseth, T. F., and Huetteman, D. F., 1988, Transverse tubule voltage control of inositol trisphosphate-induced Ca2+ release in peeled skinned muscle fibers, Biophys. J. 53: 468a.Google Scholar
  31. 31.
    Schneider, M. F., and Chandler, W. K., 1973, Voltage-dependent charge movement in skeletal muscle: A possible step in excitation-contraction coupling, Nature 242: 244–246.PubMedCrossRefGoogle Scholar
  32. 32.
    Rios, E., and Brum, G., 1987, A possible role of dihydropyridine receptor molecules in excitation-contraction coupling, Nature 325: 717–720.PubMedCrossRefGoogle Scholar
  33. 33.
    Hidalgo, C., Parra, C., Riquelme, G., and Jaimovich, E., 1986, Transverse tubule from frog skeletal muscle. Purification and properties of vesicles sealed with the inside-out orientation, Bio-chim. Biophys. Acta 855: 79–88.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Benjamin A. Suárez-Isla
    • 1
    • 2
  • Juan José Marengo
    • 1
  • Verónica Irribarra
    • 1
  • Ricardo Bull
    • 1
  1. 1.Departamento de Fisiología y Biofísica, Facultad de MedicinaUniversidad de ChileSantiagoChile
  2. 2.Centro de Estudios Científicos de SantiagoSantiagoChile

Personalised recommendations