Metabolism of Phosphoinositides in Skeletal Muscle Membranes

  • Cecilia Hidalgo
  • Ximena Sánchez
  • M. Angélica Carrasco
Part of the Series of the Centro de Estudios Científicos de Santiago book series (SCEC)


The activation of a number of cell surface receptors results in the formation of inositol phosphates and diacylglycerol (DAG) through the cleavage of membrane phosphoinositides by phospholipase-C.


Skeletal Muscle Sarcoplasmic Reticulum Inositol Phosphate Inositol Trisphosphate Rabbit Skeletal Muscle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Majerus, P. W., Connolly, T. M., Deckmyn, H., Ross, T. S., Bross, T. E., Ishii, H., Bansal, V. S., and Wilson, D. B., 1986, The metabolism of phosphoinositide-derived messenger molecules, Science 234: 1519–1526.PubMedCrossRefGoogle Scholar
  2. 2.
    Sekar, M. C., and Hokin, L. E., 1986, The role of phosphoinositides in signal transduction, J. Membrane Biol. 89: 193–210.CrossRefGoogle Scholar
  3. 3.
    Berridge, M. J., 1987, Inositol trisphosphate and diacylglycerol: Two interacting second messengers, Ann. Rev. Biochem. 56: 159–193.PubMedCrossRefGoogle Scholar
  4. 4.
    Berridge, M. J., 1988, Inositol lipids and calcium signalling, Proc. Royal Soc. London 234: 359–378.CrossRefGoogle Scholar
  5. 5.
    Majerus, P. W., Connolly, T. M., Bansal, V. S., Inhora, R. C., Ross, T. S., and Lips, D. L., 1988, Inositol phosphates: Synthesis and degradation, J. Biol. Chem. 263: 3051–3054.PubMedGoogle Scholar
  6. 6.
    Guillemette, G., Baila, T., Baukal, A. J., and Cart, K. J., 1988, Characterization of inositol 1,4,5-trisphosphate receptors and calcium mobilization in a hepatic plasma membrane fraction, J. Biol. Chem. 263: 4541–4548.PubMedGoogle Scholar
  7. 7.
    Nishizuka, Y., 1984, The role of protein kinase-C in cell surface signal transduction and tumor promotion, Nature 308: 693–697.PubMedCrossRefGoogle Scholar
  8. 8.
    Nishizuka, Y., 1986, Studies and perspectives of protein kinase-C., Science 233: 305–312.PubMedCrossRefGoogle Scholar
  9. 9.
    Whitman, M., Downes, C. P., Keeler, M., Keller, T., and Cantley, L., 1988, Type I phos-phatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate, Nature 332: 644–646.PubMedCrossRefGoogle Scholar
  10. 10.
    Cockcroft, S., 1986, The dependence on Ca2+ of the guanine-nucleotide-activated polyphosphoinositide phosphodiesterase in neutrophil plasma membranes, Biochem. J. 240: 503–507.PubMedGoogle Scholar
  11. 11.
    Lo, W. W. Y., and Hughes, J., 1987, Receptor-phosphoinositidase-C coupling: Multiple G-pro-teins? FEBS Lett. 224: 1–3.PubMedCrossRefGoogle Scholar
  12. 12.
    Downes, C.P., Mussat, M. C., and Michell, R. H., 1982, The inositol trisphosphate Phosphomonoesterase of the human erythrocyte membrane, Biochem. J. 203: 169–177.PubMedGoogle Scholar
  13. 13.
    Storey, D. J., Shears, S. B., Kirk, C. J., and Michell, R. H., 1984, Stepwise enzymatic de-phosphorylation of inositol 1,4,5-trisphosphate to inositol in liver, Nature 312: 374–376.PubMedCrossRefGoogle Scholar
  14. 14.
    Batty, I. R., Nahorski, S. R., and Irvine, R. F., 1985, Rapid formation of inositol 1,3,4,5-tetrakisphosphate following muscarinic receptor stimulation of rat cerebral cortical slices, Biochem. J. 232: 211–215.PubMedGoogle Scholar
  15. 15.
    Burguess, G. M., McKinney, J. S., Irvine, R. F., and Putney, Jr., J. W., 1985, Inositol 1,4,5-trisphosphate and inositol 1,3,4-trishosphate formation in Ca2+-mobilizing hormone-activated cells, Biochem. J. 232: 237–243.Google Scholar
  16. 16.
    Irvine, R. F., Anggard, E. E., Letcher, A. J., and Downes, C. P., 1985, Metabolism of inositol 1,4,5-trisphosphate and inositol 1,3,4-trisphosphate in rat parotid glands, Biochem. J. 229: 505–511.PubMedGoogle Scholar
  17. 17.
    Hansen, C. A., Mak, S., and Williamson, J. R., 1986, Formation and metabolism of inositol 1,3,4,5-tetrakisphosphate in liver, J. Biol. Chem. 261: 8100–8103.PubMedGoogle Scholar
  18. 18.
    Biden, T. J., and Wollheim, C. B., 1986, Ca2+ regulates the inositol tris/tetrakisphosphate pathway in intact and broken preparations of insulin-secreting RIN mSF cells, J. Biol. Chem. 261: 11931–11934.PubMedGoogle Scholar
  19. 19.
    Daniel, J. J., Dangelmaier, C. A., and Smith, J. B., 1988, Calcium modulates the generation of inositol 1,3,4-trisphosphate in human platelets by the activation of inositol 1,4,5-trisphosphate 3-kinase, Biochem. J. 253: 789–794.PubMedGoogle Scholar
  20. 20.
    Irvine, R. F., and Moor, R. M., 1986, Microinjection of inositol 1,3,4,5-tetrakisphosphate activates sea urchin eggs by a mechanism dependent on external Ca2+, Biochem. J. 240: 917–920.PubMedGoogle Scholar
  21. 21.
    Morris, A. P., Gallacher, D. V., Irvine, R. F., and Petersen, O. H., 1987, Synergism of inositol trisphosphate and tetrakisphosphate in activating Ca2+-dependent K+ channels, Nature 330: 653–655.PubMedCrossRefGoogle Scholar
  22. 22.
    Hill, T. D., Dean, N. M., and Boynton, A. L., 1988, Inositol 1,3,4,5-tetrakisphosphate induces Ca2+ sequestration in rat liver cells, Science 242: 1176–1178.PubMedCrossRefGoogle Scholar
  23. 23.
    Doughney, C., McPherson, M. A., and Dormer, R. L., 1988, Metabolism of inositol 1,3,4,5-tetrakisphosphate by human erythrocyte membranes: A new mechanism for the formation of inositol 1,4,5-trisphosphate, Biochem. J. 251: 927–929.PubMedGoogle Scholar
  24. 24.
    Baila, T., Guillemette, G., Bambol, A. J., and Cart, K. J., 1987, Metabolism of inositol 1,3,4-trisphosphate to a new tetrakisphosphate isomer in angiotensin-stimulated adrenal glomerulosa cells, J. Biol. Chem. 262: 9952–9955.Google Scholar
  25. 25.
    Shears, S. B., Parry, J. B., Tang, E. K. Y., Irvine, R. F., Michell, R. H., and Kirk, C. J., 1987, Metabolism of D-myo-inositol 1,3,4,5-tetrakisphosphate by rat liver, including the synthesis of a novel isomer of myo-inositol tetrakisphosphate, Biochem. J. 246: 139–147.PubMedGoogle Scholar
  26. 26.
    Stephens, L. R., Hawkins, P. T., Barber, C. J., and Downes, C. P., 1988, Synthesis of myo-inositol 1,3,4,5,6-pentakisphosphate from inositol phosphates generated by receptor activation, Biochem. J. 253: 721–733.PubMedGoogle Scholar
  27. 27.
    Heslop, J. P., Irvine, R. F., Tashjian, A. H., Jr., and Berridge, M. J., 1985, Inositol tetrakis- and pentakisphosphates in GH4 cells, J. Exp. Biol. 119: 395–401.PubMedGoogle Scholar
  28. 28.
    Vallejo, M., Jackson, T., Lightman, S., and Hanley, M. R., 1987, Occurrence and extracellular actions of inositol pentakis- and hexakisphosphate in mammalian brain, Nature 330: 656–658.PubMedCrossRefGoogle Scholar
  29. 29.
    Vergara, J., Tsien, R. Y., and Delay, M., 1985, Inositol 1,4,5-trisphosphate: Possible chemical link in excitation-contraction coupling in muscle, Proc. Natl. Acad. Sci. USA 82: 6352–6356.PubMedCrossRefGoogle Scholar
  30. 30.
    Volpe, P., Salviati, G., Di Virgilio, F., and Pozzan, T., 1985, Inositol trisphosphate induces Ca2+ release from the sarcoplasmic reticulum of skeletal muscle, Nature 316: 347–349.PubMedCrossRefGoogle Scholar
  31. 31.
    Hidalgo, C., Carrasco, M. A., Magendzo, K., and Jaimovich, E., 1986, Phosphorylation of phosphatidylinositol by transverse tubule vesicles and its possible role in excitation-contraction coupling, FEBS Lett. 202: 69–73.PubMedCrossRefGoogle Scholar
  32. 32.
    Carrasco, M. A., Magendzo, K., Jaimovich, E., and Hidalgo, C., 1988, Calcium modulation of phosphoinositide kinases in transverse tubule vesicles from frog skeletal muscle, Arch. Biochem. Biophys. 262: 306–366.CrossRefGoogle Scholar
  33. 33.
    Varsanyi, M., Messer, M., Brandt, N. R., and Heilmeyer, L. M. G., 1986, Phosphatidylinositol 4,5-bisphosphate formation in rabbit skeletal and heart muscle membranes, Biochem. Biophys. Res. Commun. 138: 1395–1404.PubMedCrossRefGoogle Scholar
  34. 34.
    Varsanyi, M., Messer, M., and Brandt, N. R., 1989, Intracellular localization of inositol-phos-pholipid-metabolizing enzymes in rabbit fast twitch skeletal muscle: Can D-myo-inositol 1,4,5-trisphosphate play a role in excitation-contraction coupling? Eur. J. Biochem. 179: 473–479.PubMedCrossRefGoogle Scholar
  35. 35.
    Jay, S. D., and Campbell, K. P., 1988, Characterization of phosphatidylinositol 4,5-bisphosphate production in skeletal muscle triads, Biophys. J. 53: 467a.Google Scholar
  36. 36.
    Hidalgo, C., Parra, C., Riquelme, G., and Jaimovich, E., 1986, Transverse tubules from frog skeletal muscle: Purification and properties of vesicles sealed with the inside-out orientation, Biochem. Biophys. Acta 855: 79–88.PubMedCrossRefGoogle Scholar
  37. 37.
    Hidalgo, C., Gonzalez, M. E., and Lagos, R., 1983, Characterization of the Ca2+ — or Mg2+ -ATPase of transverse tubule membranes isolated from rabbit skeletal muscle, J. Biol. Chem. 258: 13937–13945.PubMedGoogle Scholar
  38. 38.
    Collins, C. A., and Wells, W. W., 1983, Identification of phosphatidylinositol kinase in rat liver lysosomal membranes, J. Biol. Chem. 258: 2130–2134.PubMedGoogle Scholar
  39. 39.
    Guisto, N. M., and Ilincheta de Boschero, M. G., 1986, Synthesis of polyphosphoinositids in vertebrate photoreceptor membranes, Biochim. Biophys. Acta 877: 440–446.Google Scholar
  40. 40.
    Yamakawa, A., and Takenawa, T., 1988, Purification and characterization of membrane-bound phosphatidylinositol kinase from rat brain, J. Biol. Chem. 263: 17555–17560.PubMedGoogle Scholar
  41. 41.
    Tooke, N. E., Hales, C. N., and Hatton, J. C., 1984, Ca2+ -sensitive phosphatidylinositol 4-phosphate metabolism in a rat β-cell tumor, Biochem. J. 219: 471–480.PubMedGoogle Scholar
  42. 42.
    Rios, E., and Brum, G., 1987, Involvement of dihydropyridine receptors in excitation-contraction coupling in skeletal muscle, Nature 325: 717–720.PubMedCrossRefGoogle Scholar
  43. 43.
    Di Virgilio, F., Salviati, G., Pozzan, T., and Volpe, P., 1986, Is a guanine nucleotide-binding protein involved in excitation-contraction coupling in skeletal muscle? EMBO J. 5: 259–262.PubMedGoogle Scholar
  44. 44.
    Salviati, G., Betto, R., Tegazzin, V., and Delia Puppa, A., 1988, Subcellular localization of G-protein and phospholipase-C activity in rabbit skeletal muscle, Biophys. J. 53: 332a.Google Scholar
  45. 45.
    Donaldson, S. K., Goldking, N. D., Walseth, T. F., and Huettemann, D. A., 1987, Inositol trisphosphate stimulates Ca2+ release from peeled skeletal muscle fibers, Biochem. Biophys. Acta 927: 92–99.PubMedCrossRefGoogle Scholar
  46. 46.
    Suarez-Isla, B., Irribarra, V., Bull, R., Oberhauser, A., Larralde, L., Hidalgo, C., and Jaimovich, E., 1988, Inositol 1,4,5-trisphosphate activates a calcium channel in isolated sarcoplasmic reticulum membranes, Biophys. J. 54: 737–741.PubMedCrossRefGoogle Scholar
  47. 47.
    Lagos, N., and Vergara, J., 1989, Phosphoinositide kinase and phospholipase-C activities in T-tubule membrane vesicles of frog skeletal muscle, Biophys. J. 55: 236a.Google Scholar
  48. 48.
    Schacht, J., 1976, Inhibition by neomycin of polyphosphoinositide turnover in subcellular fractions of guinea-pig cerebral cortex in vitro, J. Neurochem. 27: 1119–1124.PubMedCrossRefGoogle Scholar
  49. 49.
    Reid, D. G., and Gajjar, K., 1987, A proton and carbon-13 nuclear magnetic resonance study of neomycin B and its interactions with phosphatidylinositol 4,5-bisphosphate, J. Biol. Chem. 262: 7967–7972.PubMedGoogle Scholar
  50. 50.
    Kasianowicz, J., Gabev, E., and McLaughlin, S., 1988, The binding of neomycin to phosphatidylinositol 4,5-bisphosphate (PIP2), Biophys. J. 53: 517a.Google Scholar
  51. 51.
    Lysnes, O-B., Verhoeven, A. J. M., and Holmsen, H., 1987, Neomycin inhibits agonist-stimulated polyphosphoinositide metabolism and responses in human platelets, Biochem. Biophys. Res. Commun. 144: 454–462.CrossRefGoogle Scholar
  52. 52.
    Hidalgo, C., and Jaimovich, E., 1989, Inositol trisphosphate and excitation-contraction coupling in skeletal muscle, J. Bioenerg. Biomemb. 21: 267–281.CrossRefGoogle Scholar
  53. 53.
    Milani, D., Volpe, P., and Pozzan, T., 1988, D-myo-inositol 1,4,5-trisphosphate phosphatase in skeletal muscle, Biochem. J. 254: 525–529.PubMedGoogle Scholar
  54. 54.
    Janiak, M. J., Small, D. M., and Shipley, G. G., 1979, Temperature and compositional dependence of the structure of hydrated dimyristoyl lecithin, J. Biol. Chem. 254: 6068–6078.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Cecilia Hidalgo
    • 1
    • 2
  • Ximena Sánchez
    • 1
  • M. Angélica Carrasco
    • 1
  1. 1.Departamento de Fisiología y Biofísica, Facultad de MedicinaUniversidad de ChileSantiagoChile
  2. 2.Centro de Estudios Científicos de SantiagoSantiagoChile

Personalised recommendations