Second Messengers in Invertebrate Phototransduction

  • Juan Bacigalupo
  • Edwin Johnson
  • Phyllis Robinson
  • John E. Lisman
Part of the Series of the Centro de Estudios Científicos de Santiago book series (SCEC)


In visual transduction, the absorption of light by specialized photoreceptor cells evokes a change in voltage across the plasma membrane termed the receptor potential. The problem of how this excitation process occurs has fascinated physiologists and biochemists for over 100 years. We now know that the process involves three fundamentally different phases. In the first phase, the absorption of light by the visual pigment, rhodopsin, is transduced into a change in the conformation of the visual pigment. This phase involves no amplification because one photon alters the conformation of only one rhodopsin molecule. In the second phase, chemical amplification produces a large change in the concentration of a second messenger. In the final phase, this concentration change is detected by membrane channels which gate the flow of ions, thereby generating the receptor potential.


Visual Pigment Test Flash Intracellular Injection Ventral Photoreceptor Invertebrate Photoreceptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hurley, J. B., 1987, Molecular properties of the cGMP cascade of vertebrate photoreceptors, Ann. Rev. Physiol. 49: 793–812.CrossRefGoogle Scholar
  2. 2.
    Pugh, E. N., Jr., 1987, The nature and identity of the internal excitational transmitter of vertebrate phototransduction, Ann. Rev. Physiol. 49: 715–741.CrossRefGoogle Scholar
  3. 3.
    McNaughton, P. A., Cervetto, L., and Nunn, B. J., 1986, Measurement of the intracellular free calcium concentration in salamander rods, Nature 322: 261–263.PubMedCrossRefGoogle Scholar
  4. 4.
    Matthew, H. R., Murphy, R. L. W., Fain, G. L., and Lamb, T. D., 1988, Photoreceptor light adaptation is mediated by cytoplasmic calcium concentration, Nature 334: 67–69.CrossRefGoogle Scholar
  5. 5.
    Nakatani, K., and Yau, K.-W., 1988, Calcium and light adaptation in retinal rods and cones, Nature 334: 69–71.PubMedCrossRefGoogle Scholar
  6. 6.
    Koch, K. W., and Stryer, L., 1988, Highly cooperative feedback control of retinal rod guanylate cyclase by calcium ions, Nature 334: 64–66.PubMedCrossRefGoogle Scholar
  7. 7.
    Brown, J. E., and Coles, J. A., 1979, Saturation of the response to light in Limulus ventral photoreceptor, J. Physiol. 296: 373–392.PubMedGoogle Scholar
  8. 8.
    Fain, G. L., and Lisman, J. E., 1981, Membrane conductances of photoreceptors, Prog. Biophys. Molec. Biol. 37: 91–147.CrossRefGoogle Scholar
  9. 9.
    Detwiler, P. B., Conner, J. A., and Bodoia, R. D., 1982, Gigaseal patch clamp recordings from outer segments of intact retinal rods, Nature 300: 59–61.PubMedCrossRefGoogle Scholar
  10. 10.
    Bacigalupo, J., and Lisman, J. E., 1983, Single-channel currents activated by light in Limulus ventral photoreceptors, Nature 304: 268–270.PubMedCrossRefGoogle Scholar
  11. 11.
    Clark, A. W., Millecchia, R., and Mauro, A., 1969, The ventral photoreceptor of Limulus. I. The microanatomy, J. Gen. Physiol. 54: 289–309.PubMedCrossRefGoogle Scholar
  12. 12.
    Stern, J., Chinn, K., Bacigalupo, J., and Lisman, J. E., 1982, Distinct lobes of Limulus ventral photoreceptors. I. functional and anatomical properties of lobes revealed by removal of glial cells, J. Gen. Physiol. 80: 825–837.PubMedCrossRefGoogle Scholar
  13. 13.
    Caiman, B., and Chamberlain, S., 1982, Distinct lobes of Limulus ventral photoreceptors. II. Structure and ultrastructure, J. Gen. Physiol. 80: 839–862.CrossRefGoogle Scholar
  14. 14.
    Lisman, J. E., and Brown, J. E., 1972, The effects of intracellular iontophoretic injection of calcium and sodium ions on the light response of Limulus ventral photoreceptors, J. Gen. Physiol. 59: 701–719.PubMedCrossRefGoogle Scholar
  15. 15.
    Brown, J. E., Brown, P. K., and Pinto, L. H., 1972, Detection of light-induced changes in intracellular ionized calcium concentration in Limulus ventral photoreceptor using arsenazo III, J. Physiol. 267: 299–320.Google Scholar
  16. 16.
    Brown, J. E., and Blinks, J. R., 1974, Changes in intracellular free calcium concentration during illumination of invertebrate photoreceptors, J. Gen. Physiol. 64: 643–665.PubMedCrossRefGoogle Scholar
  17. 17.
    Lisman, J. E., and Brown, J. E., 1975, Effects of intracellular injection of calcium buffers in Limulus ventral photoreceptors, J. Gen. Physiol. 66: 489–506.PubMedCrossRefGoogle Scholar
  18. 18.
    Lisman, J. E., and Strong, J. A., 1979, The initiation of excitation and adaptation in Limulus ventral photoreceptors, J. Gen. Physiol. 73: 219–243.PubMedCrossRefGoogle Scholar
  19. 19.
    Fein, A., Payne, R., Corson, D. W., Berridge, M. J., and Irvine, R. F., 1984, Photoreceptor excitation and adaptation by inositol 1,4,5-trisphosphate, Nature 311: 157–160.PubMedCrossRefGoogle Scholar
  20. 20.
    Brown, J. E., Rubin, L. J., Ghalayini, A. J., Tarver, A. P., Irvine, R. F., Berridge, M. J., and Anderson, R. E., 1984, Evidence that myo-inositol polyphosphate may be a messenger for visual excitation in Limulus photoreceptors, Nature 311: 160–163.PubMedCrossRefGoogle Scholar
  21. 21.
    Brown, J. E., and Rubin, L. J., 1984, A direct demonstration that inositol-trisphosphate induces an increase in intracellular calcium in Limulus photoreceptors, Biochem. Biophys. Res. Comm. 125: 1137–1142.PubMedCrossRefGoogle Scholar
  22. 22.
    Payne, R., Corson, D. W., Fein, A., and Berridge, M. J., 1986, Excitation and adaptation of Limulus ventral photoreceptors by inositol 1,4,5-trisphosphate result from a rise in intracellular calcium, J. Gen. Physiol. 88: 127–142.PubMedCrossRefGoogle Scholar
  23. 23.
    Szuts, E. Z., Wood, S. F., Reid, M. S., and Fein, A., 1986, Light stimulates the rapid formation if inositol trisphosphate in squid retinas, Biochem J. 240: 929–932.PubMedGoogle Scholar
  24. 24.
    Brown, J. E., Watkins, D. C., and Malbon, C. C., 1987, Light-induced changes in the content of inositol phosphates in squid Loligo pealei retina, Biochem J. 247: 293–297.PubMedGoogle Scholar
  25. 25.
    Vandenberg, C.A., and Montai, M., 1984, Light-regulated biochemical events in invertebrate photoreceptors. 2. Light-regulated phosphorylation of rhodopsin and phosphinositides in squid photoreceptor membranes, Biochemistry 23: 2347–2352.PubMedCrossRefGoogle Scholar
  26. 26.
    Baer, K. M., and Saibil, H. R., 1988, Light- and GTP-activated hydrolysis of phosphatidylinositol bisphosphate in squid photoreceptor membranes, J. Biol. Chem. 263: 17–20.PubMedGoogle Scholar
  27. 27.
    Bloomquist, B. T., Shortridge, R. D., Schneuwly, W., Perdew, M., Montell, C., Steller, H., Rubin, G., and Pak, W. L., 1988, Isolation of a putative phospholipase-C gene of Drosophila, norpA, and its role in phototransduction, Cell 54: 723–733.PubMedCrossRefGoogle Scholar
  28. 28.
    Devary, O., Heichal, O., Blumenfeld, A., Cassei, D., Suss, E., Barash, S., Rubinstein, C.T., Minke, B., and Selinger, Z., 1987, Coupling of photoexcited rhodopsin to inositol phospholipid hydrolysis in fly photoreceptors, P.N.A.S. (USA) 84: 6939–6943.CrossRefGoogle Scholar
  29. 29.
    Tsuda, M., 1987, Octopus G-protein: A signal-coupling protein in invertebrate photoreceptor, in: Proceedings of the International Conference on Retinal Proteins (V. Ochinnikov, ed.), VNU Science Press, The Netherlands, pp. 393–404.Google Scholar
  30. 30.
    Payne, R., Corson, D.W., and Fein, A., 1986, Pressure injection of calcium both excites and adapts Limulus ventral photoreceptors, J. Gen. Physiol. 88: 101–12.Google Scholar
  31. 31.
    Bolsover, S. R., and Brown, J. E., 1985, Calcium ion, an intracellular messenger of light adaptation, also participates in excitation of Limulus photoreceptors, J. Physiol. 364: 381–393.PubMedGoogle Scholar
  32. 32.
    Payne, R., and Fein, A., 1986, The initial response of Limulus ventral photoreceptors to bright flashes: released calcium as a synergist to excitation, J. Gen. Physiol. 87: 243–269.PubMedCrossRefGoogle Scholar
  33. 33.
    Bolsover, S. R., and Brown, J. E., 1982, Injection of guanosine and adenosine nucleotides into Limulus ventral photoreceptor cells, J. Physiol. 332: 325–342.PubMedGoogle Scholar
  34. 34.
    Stern, J. H., and Lisman, J. E., 1982, Internal dialysis of Limulus ventral photoreceptors, Proc. Natl. Acad. Sci. 79: 7580–7584.PubMedCrossRefGoogle Scholar
  35. 35.
    Saibel, H. R., 1984, A light-stimulated increase in cyclic GMP in squid photoreceptors, FEBS Lett. 168: 213–216.CrossRefGoogle Scholar
  36. 36.
    Johnson, E. C., Robinson, P. R., and Lisman, J. E., 1986, Cyclic GMP is involved in the excitation of invertebrate photoreceptors, Nature 324: 468–470.PubMedCrossRefGoogle Scholar
  37. 37.
    Robinson, P. R., Cote, R. H., and Lisman, J. E., 1987, Guanylate cyclase activity in squid photoreceptor membranes, Biophys. J. 51: 269a.CrossRefGoogle Scholar
  38. 38.
    Inoue, M., and Brown, J. E., 1988, Cyclic GMP phosphodiesterase in Limulus ventral eye, ARVO abstr:218.Google Scholar
  39. 39.
    Miller, W. H., Gorman, R. E., and Bitensky, M. W., 1971, Cyclic adenosine monophosphate: function in photoreceptors, Science 174: 295–297.PubMedCrossRefGoogle Scholar
  40. 40.
    Wulff, V. J., 1973, The effect of cyclic AMP and aminophylline on Limulus lateral eye retinular cells, Vision Res. 13: 2335–2344.PubMedCrossRefGoogle Scholar
  41. 41.
    Corson, D. W., Fein, A., and Schmidt, J., 1979, Two effects of phosphodiesterase inhibitors in Limulus ventral photoreceptors, Brain Res. 176: 365–368.PubMedCrossRefGoogle Scholar
  42. 42.
    Faddis, M., and Brown, J. E., 1988, Effects of drugs presumed to change intracellular cGMP on voltage-clamp current in Limulus ventral photoreceptors, ARVO abstr:350.Google Scholar
  43. 43.
    Fesenko, S. S., Kolesnikou, A. L., and Lyubarsky, E. E., 1985, Induction by cyclic GMP of cationic conductance on the plasma membrane of the retinal rod outer segment, Nature 313: 310–313.PubMedCrossRefGoogle Scholar
  44. 44.
    Bacigalupo, J., Johnson, E., and Lisman, J. E., 1987, A low-conductance light-dependent channel observed in cell-attached and excised patches of Limulus ventral photoreceptors, Biophys. J. 51: 15a.Google Scholar
  45. 45.
    Baylor, D. A., Lamb, T. D., and Yau, K.-W., 1979, Responses of retinal rods to single photons, J. Physiol. 288: 613–634.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Juan Bacigalupo
    • 1
  • Edwin Johnson
    • 2
  • Phyllis Robinson
    • 3
  • John E. Lisman
    • 3
  1. 1.Departamento de Biologia, Facultad de CienciasUniversidad de ChileSantiagoChile
  2. 2.Marshall University School of MedicineHuntingtonUSA
  3. 3.Department of BiologyBrandeis UniversityWalthamUSA

Personalised recommendations