Advertisement

What We Know and What We Would Like to Know About the Role of Inositol 1,4,5-Trisphosphate in Skeletal Muscle

  • Pompeo Volpe
  • Francesco Di Virgilio
  • Tullio Pozzan
Part of the Series of the Centro de Estudios Científicos de Santiago book series (SCEC)

Abstract

In skeletal muscle, the depolarization of the transverse tubule (TT) membrane system evokes Ca2+ release from the terminal cisternae (TC) of the sarcoplasmic reticulum (SR), a specialized endomembrane network. The coupling between excitation and contraction occurs at the triad where TT and TC are associated junctionally via bridging structures, also referred to as “feet.”

Keywords

Skeletal Muscle Sarcoplasmic Reticulum Skeletal Muscle Fiber Inositol Trisphosphate Rabbit Skeletal Muscle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schneider, M. F., and Chandler, W. K., 1973, Voltage-dependent charge movement in skeletal muscle: A possible step in excitation-contraction coupling, Nature 242: 244–246.PubMedCrossRefGoogle Scholar
  2. 2.
    Mathias, R. T., Levis, R. A., and Eisenberg, R. S., 1980, Electrical models of excitation-contraction coupling and charge movement in skeletal muscle, J. Gen. Physiol. 76: 1–31.PubMedCrossRefGoogle Scholar
  3. 3.
    Vergara, J., and Delay, M., 1986, A transmission delay and the effect of temperature at the triadic junction of skeletal muscle, Proc. R. Soc. (London) 229: 97–110.CrossRefGoogle Scholar
  4. 4.
    Berridge, M. J., and Irvine, R. F., 1984, Inositol trisphosphate, a novel second messenger in cellular signal transduction, Nature 312: 315–321.PubMedCrossRefGoogle Scholar
  5. 5.
    Volpe, P., Di Virgilio, F., Pozzan, T., and Salviati, G., 1986, Role of inositol 1,4,5-trisphosphate in excitation-contraction coupling in skeletal muscle, FEBS Lett. 197: 1–4.PubMedCrossRefGoogle Scholar
  6. 6.
    Volpe, P., Di Virgilio, F., Bruschi, G., Regolisti, G., and Pozzan, T., 1989, Phosphoinositide metabolism and excitation-contraction coupling in smooth, cardiac, and skeletal muscles, in: Inositol Lipids and Cell Signaling (R. H. Mitchell, A. R. Drummond, and C. P. Downes, Eds.), Academic, New York. pp. 377–404.Google Scholar
  7. 7.
    Volpe, P., Pozzan, T., and Di Virgilio, F., 1989, Is inositol 1,4,5-trisphosphate the chemical transmitter for excitation-contraction coupling in skeletal muscle? in: Neuromuscular Junction (Sellig, L. C., Sibelius, R., and S. Thesleff, Eds.) Elsevier, Amsterdam, pp. 381–393.Google Scholar
  8. 8.
    Vergara, J., Asotra, K., and Delay, M., 1987, A chemical link in excitation-contraction coupling in skeletal muscle, in: Cell Calcium and the Control of Membrane Transport (L. J. Mandel and D. G. Eaton, Eds.), pp. 133–151, The Rockefeller University Press, New York.Google Scholar
  9. 9.
    Hidalgo, C., Carrasco, M. A., Magendzo, K., and Jaimovich, E., 1986, Phosphorylation of phosphatidylinositol by transverse tubule vesicles and its possible role in excitation-contraction coupling, FEBS Lett. 202: 69–73.PubMedCrossRefGoogle Scholar
  10. 10.
    Carrasco, M. A., Magendzo, K., Jaimovich, E., and Hidalgo, C., 1988, Calcium modulation of phosphoinositide kinases in transverse tubule vesicles from frog skeletal muscle, Arch. Biochem. Biophys. 262: 306–366.CrossRefGoogle Scholar
  11. 11.
    Jay, S. D., and Campbell, K. P., 1988, Characterization of phosphatidylinositol 4,5-bisphosphate production in skeletal muscle triads, Biophys. J. 53: 467a.Google Scholar
  12. 12.
    Varsanyi, M., Messer, M., Brandt, N. R., and Heilmeyer, L. M. G., 1986, Phosphatidylinositol 4,5-bisphosphate formation in rabbit skeletal and heart muscle membranes, Biochem. Biophys. Res. Commun. 138: 1395–1401.PubMedCrossRefGoogle Scholar
  13. 13.
    Salviati, G., Betto, R., Tegazzin, V., and Delia Puppa, A., 1988, Subcellular localization of G-protein and phospholipase-C activity in rabbit skeletal muscle, Biophys. J. 53: 332.Google Scholar
  14. 14.
    Vergara, J., Tsien, R. Y., and Delay, M., 1985, Inositol 1,4,5-trisphosphate: Possible chemical link in excitation-contraction coupling in muscle, Proc. Natl. Acad. Sci. USA 82: 6352–6356.PubMedCrossRefGoogle Scholar
  15. 15.
    Downes, C. P., and Mitchell, R. H., 1981, The polyphosphoinositide phosphodiesterase of erythrocyte membranes, Biochem. J. 198: 133–140.PubMedGoogle Scholar
  16. 16.
    Storey, D. J., Shears, S. B., Kirk, C. J., and Michell, R. H., 1984, Stepwise enzymatic de-phosphorylation of inositol 1,4,5-trisphosphate to inositol in iiver, Nature 312: 374–376.PubMedCrossRefGoogle Scholar
  17. 17.
    Rojas, E., Nassar-Gentina, V., Luxoro, M., Pollard, M. E., and Carrasco, M. A., 1987, Inositol 1,4,5-trisphosphate-induced Ca2+ release from the sarcoplasmic reticulum and contraction in crustacean muscle, Can. J. Physiol. Pharacol. 65: 672–680.CrossRefGoogle Scholar
  18. 18.
    Lea, T. J., Griffiths, D. J., Treagar, R. T., and Ashley, C. C., 1986, An examination of the ability of inositol 1,4,5-trisphosphate to induce calcium release and tension development in skinned skeletal muscle fibers of frog and crustacean, FEBS Lett. 207: 153–161.PubMedCrossRefGoogle Scholar
  19. 19.
    Donaldson, S. K., Goldberg, N. D., Walseth, T. F., and Huettemann, D. A., 1987, Inositol trisphosphate stimulates Ca2+ release from peeled skeletal muscle fibers, Biochem. Biophys. Acta 927: 92–99.PubMedCrossRefGoogle Scholar
  20. 20.
    Milani, D., Volpe, P., and Pozzan, T., 1989, D-myo-inositol 1,4,5-trisphosphate phosphatase in skeletal muscle, Biochem. J. 254: 525–529.Google Scholar
  21. 21.
    Walker, J. W., Somlyo, A. V., Goldman, Y. E., Somlyo, A. P., and Trentham, D. A., 1987, Kinetics of smooth and skeletal muscle activation by laser pulse photolysis of caged inositol 1,4,5-trisphosphate, Nature 327: 249–252.PubMedCrossRefGoogle Scholar
  22. 22.
    Volpe, P., Salviati, G., Di Virgilio, F., and Pozzan, T., 1985, Inositol 1,4,5-trisphosphate induces Ca2+ release from the sarcoplasmic reticulum of skeletal muscle, Nature 316: 347–349.PubMedCrossRefGoogle Scholar
  23. 23.
    Nosek, T. M., Williams, M. F., Zeigler, J. T., and Godt, R. E., 1986, Inositol trisphosphate enhances calcium release in skinned cardiac and skeletal muscle, Am. J. Physiol. 250: C807-C810.PubMedGoogle Scholar
  24. 24.
    Donaldson, S. K., 1986, Mammalian muscle fiber types: Comparison of excitation-contraction coupling mechanisms, Acta Physiol. Scand. 128: 157–166.Google Scholar
  25. 25.
    Sherer, N. M., and Ferguson, J. E., 1985, Inositol 1,4,5-trisphosphate is not effective in releasing calcium from skeletal muscle sarcoplasmic reticulum membranes, Biochem. Biophys. Res. Commun. 316: 347–349.Google Scholar
  26. 26.
    Adunjah, S. A., and Dean, M., 1986, Ca2+ transport in human platelet membranes: Kinetics of active transport and passive release, J. Biol. Chem. 261: 3122–3127.Google Scholar
  27. 27.
    Palade, P., 1987, Drug-induced Ca2+ release from isolated sarcoplasmic reticulum. III. Block of Ca2+ -induced Ca2+ release by organic polyamines, J. Biol. Chem. 262: 6149–6157.PubMedGoogle Scholar
  28. 28.
    Mikos, G. J., and Snow, T. R., 1987, Failure of inositol 1,4,5-trisphosphate to elicit or potentiate Ca2+ release from isolated skeletal muscle sarcoplasmic reticulum, Biochim. Biophys. Acta 927: 256–260.PubMedCrossRefGoogle Scholar
  29. 29.
    Smith, J. S., Coronado, R., and Meissner, G., 1986, Single-channel measurements of the calcium release channel from skeletal muscle sarcoplasmic reticulum, J. Gen. Physiol. 88: 573–588.PubMedCrossRefGoogle Scholar
  30. 30.
    Suarez-Isla, B. A., Irribara, V., Bull, R., Oberhauser, A., Larrale, L., Jaimovich, E., and Hidalgo, C., 1988, Inositol 1,4,5-trisphosphate activates a calcium channel in isolated sarcoplasmic reticulum (SR) membranes, Biophys. J. 53: 467a.Google Scholar
  31. 31.
    Hannon, J. D., Lee, N. K. M., and Blinks, J. R., 1988, Calcium release by inositol trisphosphate in amphibian and mammalian skeletal muscle is an artifact of cell disruption, and probably results from depolarization of sealed-off T-tubules, Biophys. J. 53: 607a.Google Scholar
  32. 32.
    Novotny, I., Saleh, F., and Novotna, R., 1983, K+ depolarization and phospholipid metabolism in frog sartorius muscle, Gen. Physiol. Biophys. 2: 329–337.PubMedGoogle Scholar
  33. 33.
    Adamo, S., Zani, B. M., Nervi, C., Senni, M. I., Molinaro, M., and Eusebi, F., 1985, Acetylcholine stimulates phosphatidyl inositol turnover at nicotinic receptors of cultured myotubes, FEBS Lett. 190: 161–164.PubMedCrossRefGoogle Scholar
  34. 34.
    Cockroft, S., and Gomperts, B. D., 1985, Role of guanine nucleotide-binding proteins in the activation of polyphosphoinositide phosphodiesterase, Nature 314: 534–536.CrossRefGoogle Scholar
  35. 35.
    Di Virgilio, F., Salviati, G., Pozzan, T., and Volpe, P., 1986, Is a guanine nucleotide-binding protein involved in excitation-contraction coupling in skeletal muscle? EMBO J 5: 259–262.PubMedGoogle Scholar
  36. 36.
    Sherer, N. M., Toro, M-J., Entman, M. L., and Birnbaumer, L., 1987, G-protein distribution in canine cardiac sarcoplasmic reticulum and sarcolemma: Comparison to rabbit skeletal muscle membranes and to brain and erythrocyte G-proteins, Arch. Biochem. Biophys. 259: 431–440.CrossRefGoogle Scholar
  37. 37.
    Heilbronn, E., and Haggblad, J., 1987, Transmitter/modulator-induced events related to excitation-contraction coupling in skeletal muscle of vertebrates, Action of ATP. N.A.T.O. ASI Series.Google Scholar
  38. 38.
    Donaldson, S. K., Goldberg, N. D., Walseth, T. F., and Huetteman, D. A., 1988, Transverse tubule voltage control of inositol-trisphosphate-induced Ca2+ release in peeled skeletal muscle fibers, Biophys. J. 53: 468a.Google Scholar
  39. 39.
    Donaldson, S. K. B., 1985, Peeled mammalian skeletal muscle fibers: Possible stimulation of Ca2+ release via a transverse tubule-sarcoplasmic reticulum mechanism, J. Gen. Physiol. 86: 501–523.PubMedCrossRefGoogle Scholar
  40. 40.
    Eisenberg, R. S., and Gage, P. W., 1967, Frog skeletal muscle fibers: Changes in electrical properties after disruption of transverse tubular system, Science 158: 1700–1703.PubMedCrossRefGoogle Scholar
  41. 41.
    Eisenberg, B., and Eisenberg, R. S., 1968, Selective disruption of the sarcotubular system in frog sartorius muscle, J. Cell. Biol. 39: 451–467.PubMedCrossRefGoogle Scholar
  42. 42.
    Franzini-Armstrong, C., Venosa, R. A., and Horowicz, P., 1973, Morphology and accessibility of the “transverse” tubular system in frog sartorius muscled after glycerol treatment, J. Membr. Biol. 14: 197–212.PubMedCrossRefGoogle Scholar
  43. 43.
    Volpe, P., and Stephenson, E. W., 1986, Ca2+ dependence of transverse-tubule-mediated calcium release in skinned skeletal muscle fibers, J. Gen. Physiol. 87: 271–288.PubMedCrossRefGoogle Scholar
  44. 44.
    Eusebi, F., Grassi, F., Nervi, C., Caporale, C., Addrens, S., Zani, B. M., and Molinaro, M., 1987, Acetylcholine may regulate its own nicotinic receptor-channel through the C-kinase system, Proc. R. Soc. Lond. B 230: 355–365.PubMedCrossRefGoogle Scholar
  45. 45.
    Heggblad, J., and Heilbronn, E., 1987, Externally applied adenosine-5’-triphosphate causes inositol triphosphate accumulation in cultured chick myotubes, Neurosci. Lett. 74: 199–204.CrossRefGoogle Scholar
  46. 46.
    Wakelam, M. J. O., Patterson, S., and Hanley, M. R., 1987, L6 skeletal muscle cells have functional V 1-vasopressin receptors coupled to stimulated inositol phospholipid metabolism, FEBS Lett. 210: 181–184.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Pompeo Volpe
    • 1
  • Francesco Di Virgilio
    • 2
  • Tullio Pozzan
    • 2
  1. 1.Department of Physiology and BiophysicsThe University of Texas Medical BranchGalvestonUSA
  2. 2.Centro di Studio per la Fisiologia dei Mitocondri del CNRIstituto di Patologia Generale dell’ Université di PadovaPaduaItaly

Personalised recommendations