A Pharmacological Approach to the Physiological Mechanism of Excitation-Contraction Coupling

  • Philip Palade
  • Donald Brunder
  • Christine Dettbarn
  • Philip Stein
Part of the Series of the Centro de Estudios Científicos de Santiago book series (SCEC)


The use of pharmacologic agents as tools to aid in the characterization and separation of physiological processes is not a new idea. The availability of specific toxins like tetrodotoxin and saxitoxin made it easy to test for the presence of sodium channels in excitable cells and made possible the purification(1) reconstitution(2,3) and cloning(4) of such channels. We hope to utilize a pharmacologic approach here to determine whether a Ca2+ -channel isolated recently from skeletal muscle sarcoplasmic reticulum (SR) is the one of physiological importance. Is it the right channel? We know several methods exist to cause Ca2+ release from SR.(5,6) If we had specific inhibitors for each form of release, we could test whether the releases or channels they blocked were involved in excitation-contraction coupling. We will examine the role of Ca2+ -induced Ca2+ release channels first because these are the channels already isolated.


Sarcoplasmic Reticulum Calcium Release Release Channel Skeletal Muscle Fiber Calcium Release Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agnew, W. S., Levinson, S. R., Brabson, J. S., and Raftery, M. A., 1978, Purification of the tetrodotoxin-binding component associated with the voltage-sensitive sodium channel from Elec-trophorus electricus electroplax membranes, Proc. Natl. Acad. Sci. USA 75: 2606–2610.PubMedCrossRefGoogle Scholar
  2. 2.
    Talvenheimo, J. A., Tamkun, M. M., and Catterall, W. A., 1982, Reconstitution of neurotoxin-stimulated sodium transport by the voltage-sensitive sodium channel purified from rat brain, J. Biol. Chem. 257: 11868–11871.PubMedGoogle Scholar
  3. 3.
    Weigele, J. B., and Barchi, R. L., 1982, Functional reconstitution of the purified sodium channel protein from rat sarcolemma, Proc. Natl. Acad. Sci. USA 79: 3651–3655.PubMedCrossRefGoogle Scholar
  4. 4.
    Noda, M., Shimizu, S., Tanabe, T., Takai, T., Kayano, T., Ikeda, T., Takahashi, H., Nakayama, H., Kanaoka, Y., Minamino, N., Kangawa, K., Matsuo, H., Raftery, M. A., Hirose, T., Inayama, S., Hayashida, H., Miyata, T., and Numa, S. 1984, Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence, Nature 312: 121–127.PubMedCrossRefGoogle Scholar
  5. 5.
    Endo, M., 1977, Calcium release from the sarcoplasmic reticulum, Physiol. Rev. 57: 71–108.PubMedGoogle Scholar
  6. 6.
    Martonosi, A. N., 1984, Mechanisms of Ca2+ release from sarcoplasmic reticulum of skeletal muscle, Physiol. Rev. 64: 1240–1320.PubMedGoogle Scholar
  7. 7.
    Smith, J. S., Coronado, R., and Meissner, G., 1985, Sarcoplasmic reticulum contains adenine nucleotide-activated calcium channels, Nature 316: 446–449.PubMedCrossRefGoogle Scholar
  8. 8.
    Vergara, J., Tsien, R. Y., and Delay, M., 1985, Inositol 1,4,5-trisphosphate: A possible chemical link in excitation-contraction coupling in muscle, Proc. Natl. Acad. Sci. USA 82: 6352–6356.PubMedCrossRefGoogle Scholar
  9. 9.
    Volpe, P., Salviati, G., Di Virgilio, F., and Pozzan, T., 1985, Inositol 1,4,5-trisphosphate induces calcium release from sarcoplasmic reticulum of skeletal muscle, Nature 316: 347–349.PubMedCrossRefGoogle Scholar
  10. 10.
    Jenden, D. J., and Fairhurst, A. S., 1969, The pharmacology of ryanodine, Pharm. Rev. 21: 1–25.PubMedGoogle Scholar
  11. 11.
    Jones, L. R., Besch, H. R., Jr., Sutko, J. L., and Willerson, J. T., 1979, Ryanodine-induced stimulation of net Ca2+ uptake by cardiac sarcoplasmic reticulum vesicles, J. Pharmacol. Exp. Ther. 209: 48–55.PubMedGoogle Scholar
  12. 12.
    Fleischer, S., Ogunbunmi, E. M., Dixon, M. D., and Fleer, E. A. M., 1985, Localization of Ca2+ release channels with ryanodine in junctional terminal cisternae of sarcoplasmic reticulum of fast skeletal muscle, Proc. Natl. Acad. Sci. USA 82: 7256–7259.PubMedCrossRefGoogle Scholar
  13. 13.
    Pessah, I. N., Waterhouse, A. L., and Casida, J. E., 1985, Solubilization and separation of Ca2+ -ATPase from the Ca2+-ryanodine receptor complex, Biochem. Biophys. Res. Commun. 128: 449–456.PubMedCrossRefGoogle Scholar
  14. 14.
    Imagawa, T., Smith, J. S., Coronado, R., and Campbell, K. P., 1987, Purified ryanodine receptor from skeletal muscle sarcoplasmic reticulum is the Ca2+ -permeable pore of the calcium release channel, J. Biol. Chem. 262: 16636–16643.PubMedGoogle Scholar
  15. 15.
    Lai, F. A., Erickson, H. P., Rousseau, E., Liu, Q.-Y., and Meissner, G., 1988, Purification and reconstitution of the calcium release channel from skeletal muscle, Nature 331: 315–319.PubMedCrossRefGoogle Scholar
  16. 16.
    Hansford, R. G., and Lakatta, E. G., 1987, Ryanodine releases calcium from sarcoplasmic reticulum in calcium-tolerant rat cardiac myocytes, J. Physiol. (London) 390: 453–467.Google Scholar
  17. 17.
    Smith, J. S., Coronado, R., and Meissner, G., 1986, Single-channel measurements of the calcium release channel from skeletal muscle sarcoplasmic reticulum: Activation by Ca2+ and ATP and modulation by Mg2+, J. Gen. Physiol. 88: 573–588.PubMedCrossRefGoogle Scholar
  18. 18.
    Armstrong, C. M., Bezanilla, F. M., and Horowicz, P., 1972, Twitches in the presence of ethylene glycol bis(β-aminoethyl ether)-Af, W-tetraacetic acid, Biochim. Biophys. Acta 267: 605–608.PubMedCrossRefGoogle Scholar
  19. 19.
    Palade, P., 1987, Drug-induced Ca2+ release from isolated sarcoplasmic reticulum. II. Releases involving a Ca2+ -induced Ca2+ release channel, J. Biol. Chem. 262: 6142–6148.PubMedGoogle Scholar
  20. 20.
    Smith, J. S., Coronado, R., and Meissner, G., 1986, Single-channel calcium and barium currents of large and small conductance from sarcoplasmic reticulum, Biophys. J. 50: 921–928.PubMedCrossRefGoogle Scholar
  21. 21.
    Suarez-Isla, B., Orozco, C., Heller, P. F., and Froehlich, J. P., 1986, Single calcium channels in native sarcoplasmic reticulum membranes from skeletal muscle, Proc. Natl. Acad. Sci. USA 83: 7741–7745.PubMedCrossRefGoogle Scholar
  22. 22.
    Miyamoto, H., and Racker, E., 1982, Mechanism of calcium release from skeletal sarcoplasmic reticulum, J. Membrane Biol. 66: 193–201.CrossRefGoogle Scholar
  23. 23.
    Bianchi, C. P., and Bolton, T. C., 1967, Action of local anesthetics on coupling systems in muscle, J. Pharmacol. Exp. Ther. 157: 388–405.PubMedGoogle Scholar
  24. 24.
    Endo, M., Tanaka, M., and Ogawa, Y., 1970, Calcium-induced release of calcium from the sarcoplasmic reticulum of skinned skeletal muscle fibers, Nature 228: 34–36.PubMedCrossRefGoogle Scholar
  25. 25.
    Volpe, P., Salviati, G., and Chu, A., 1986, Calcium-gated calcium channels in sarcoplasmic reticulum of rabbit skinned skeletal muscle fibers, J. Gen. Physiol. 87: 289–303.PubMedCrossRefGoogle Scholar
  26. 26.
    Mitchell, R. D., Palade, P., and Fleischer, S., 1983, Purification of morphologically intact triad structures from skeletal muscle, J. Cell. Biol. 96: 1008–1016.PubMedCrossRefGoogle Scholar
  27. 27.
    Palade, P., 1987, Drug-induced Ca2+ release from isolated sarcoplasmic reticulum. I. Use of pyrophosphate to study caffeine-induced Ca2+ release, J. Biol. Chem. 262: 6135–6141.PubMedGoogle Scholar
  28. 28.
    Palade, P., Mitchell, R. D., and Fleischer, S., 1983, Spontaneous calcium release from sarcoplasmic reticulum: General description and effects of calcium, J. Biol. Chem. 258: 8098–8107.PubMedGoogle Scholar
  29. 29.
    Palade, P., 1987, Drug-induced Ca2+ release from isolated sarcoplasmic reticulum. III. Block of Ca2+ -induced Ca2+ release by organic polyamines, J. Biol. Chem. 262: 6149–6154.PubMedGoogle Scholar
  30. 30.
    Nakamura, Y., and Schwartz, A., 1972, The influence of hydrogen ion concentration on calcium binding and release by skeletal muscle sarcoplasmic reticulum, J. Gen. Physiol. 59: 22–32.CrossRefGoogle Scholar
  31. 31.
    Kasai, M., and Miyamoto, H., 1973, Depolarization-induced calcium release from sarcoplasmic reticulum membrane fragments by changing ionic environments, FEBS Lett. 34: 299–301.PubMedCrossRefGoogle Scholar
  32. 32.
    Abramson, J. J., Trimm, J. L., Weden, L., and Salama, G., 1983, Heavy metals induce rapid calcium release from sarcoplasmic reticulum vesicles isolated from skeletal muscle, Proc. Natl. Acad. Sci. USA 80: 1526–1530.PubMedCrossRefGoogle Scholar
  33. 33.
    Lodhi, S., Weiner, N. D., and Schacht, J., 1976, Interactions of neomycin and calcium in synaptosomal membranes and polyphosphoinositide monolayers, Biochim. Biophys. Acta 426: 781–785.PubMedCrossRefGoogle Scholar
  34. 34.
    Hille, B., and Campbell, D. T., 1976, An improved vaseline gap voltage clamp for skeletal muscle fibers, J. Gen. Physiol. 67: 265–293.PubMedCrossRefGoogle Scholar
  35. 35.
    Heiny, J. A., and Vergara, J., 1982, Optical signals from surface and T-system membranes in skeletal muscle fibers. Experiments with the Potentiometrie dye NK2367, J. Gen. Physiol. 80: 203–230.PubMedCrossRefGoogle Scholar
  36. 36.
    Almers, W., 1977, Local anesthetics and excitation-contraction coupling in skeletal muscle: Effects on a Ca2+ channel, Biophys. J. 18: 355–357.PubMedCrossRefGoogle Scholar
  37. 37.
    Kovacs, L., Rios, E., and Schneider, M. F., 1979, Calcium transients and intramembrane charge movement in skeletal muscle fibers, Nature 279: 391–396.PubMedCrossRefGoogle Scholar
  38. 38.
    Palade, P., and Vergara, J., 1982, Arsenazo III and antipyrylazo III calcium transients in single skeletal muscle fibers, J. Gen. Physiol. 79: 679–707.PubMedCrossRefGoogle Scholar
  39. 39.
    Volpe, P., Bravin, M., Zorzato, F., and Margreth, A., 1988, Isolation of terminal cisternae of frog skeletal muscle: Calcium storage and release properties, J. Biol. Chem. 263: 9901–9908.PubMedGoogle Scholar
  40. 40.
    Kovacs, L., and Szucs, G., 1983, Effect of caffeine on intramembrane charge movement and calcium transients in cut skeletal muscle fibers of the frog, J. Physiol. (London) 341: 559–578.Google Scholar
  41. 41.
    Delay, M., Ribalet, B., and Vergara, J., 1986, Caffeine potentiation of calcium release in frog skeletal muscle fibers, J. Physiol. (London) 375: 535–559.Google Scholar
  42. 42.
    Alvarez-Leefmans, F. J., Gamino, S. M., Giraldez, F., and Gonzales-Serratos, H., 1986, Intracellular free magnesium in frog skeletal muscle fibers measured with ion-selective microelectrodes, J. Physiol. (London) 378: 461–483.Google Scholar
  43. 43.
    Suarez-Isla, B., Irribarra, V., Bull, R., Oberhauser, A., Larralde, L., Jaimovich, E., and Hidalgo, C., 1988, Inositol 1,4,5-trisphosphate activates a calcium channel in isolated sarcoplasmic reticulum (SR) membranes, Biophys. J. 53: 467a.Google Scholar
  44. 44.
    Stein, P., and Palade, P., 1988, Sarcoballs: Direct access to sarcoplasmic reticulum Ca2+-channels in skinned frog muscle fibers, Biophys. J. 53: 455a; and 54: 357–363.Google Scholar
  45. 45.
    Rios, E., and Brum, G., 1987, Involvement of dihydropyridine receptors in excitation-contraction coupling in skeletal muscle, Nature 325: 717–720.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Philip Palade
    • 1
  • Donald Brunder
    • 1
  • Christine Dettbarn
    • 1
  • Philip Stein
    • 1
  1. 1.Department of Physiology and BiophysicsThe University of Texas Medical BranchGalvestonUSA

Personalised recommendations