A Third Role for Calcium in Excitation-Contraction Coupling

  • Eduardo Ríos
  • Robert Fitts
  • Ismael Uribe
  • Gonzalo Pizarro
  • Gustavo Brum
Part of the Series of the Centro de Estudios Científicos de Santiago book series (SCEC)


Two important roles for calcium ions in excitation-contraction coupling are traditionally described. First is the second-messenger role—Ca2+ undergoes a transient increase in the myoplasm and triggers the mechanochemical reaction of contraction. (1) This transient increase in myoplasmic free calcium concentration is usually called the Ca transient; it is the result of a flux of calcium release from the sarcoplasmic reticulum (SR). In this chapter we discuss the mechanisms by which the SR is made to open its release channels during normal muscle function. In regard to this question a second role of Ca2+ has been identified: Ca2+ is an effective agonist for opening the Ca channels of the SR. The increase in [Ca2+] i in the vicinity of the SR release channels constitutes the normal mechanism of triggering release in the heart (Ca-induced Ca release)(2,3)


Sarcoplasmic Reticulum Relative Permeability Voltage Sensor Charge Movement Conditioning Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ebashi, S., Endo, M., and Ohtsuki, L., 1969, Control of muscle, Quart. Rev. Biophys. 2: 351.CrossRefGoogle Scholar
  2. 2.
    Endo, M., 1977, Calcium release from the sarcoplasmic reticulum, Physiol. Rev. 57: 71–118.PubMedGoogle Scholar
  3. 3.
    Fabiato, A., 1985, Time and calcium dependence of activation and inactivation of calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell, J. Gen. Physiol. 85: 247–289.PubMedCrossRefGoogle Scholar
  4. 4.
    Smith, J. S., Coronado, R., and Meissner, G., 1986, Single-channel measurements of the calcium release channel from skeletal muscle sarcoplasmic reticulum: Activation by Ca2+ and ATP and modulation by Mg2+, J. Gen. Physiol. 88: 573–588.PubMedCrossRefGoogle Scholar
  5. 5.
    Fabiato, A., 1984, Dependence of the calcium-induced release from the sarcoplasmic reticulum of skinned skeletal muscle fibers from the frog semitendinosus on the rate of change of free Ca2+ at the outer surface of the sarcoplasmic reticulum, J. Physiol. 353: 56P.Google Scholar
  6. 6.
    Volpe, P., and Stephenson, E. W., 1986, Ca2+ dependence of transverse-tubule-mediated calcium release in skinned skeletal muscle fibers, J. Gen. Physiol. 87: 261–288.Google Scholar
  7. 7.
    Baylor, S. M., and Hollingworth, S., 1988, Fura 2 Ca2+ transients in frog skeletal muscle fibers, J. Physiol. 403: 151–192.PubMedGoogle Scholar
  8. 8.
    Vergara, J., and Asotra, K., 1987, The chemical transmission mechanism of excitation-contraction coupling in skeletal muscle, NIPS 2: 182–185.Google Scholar
  9. 9.
    Frank, G. B., 1958, Inward movement of calcium as a link between electrical and mechanical events in contraction, Nature 182: 1800–1801.PubMedCrossRefGoogle Scholar
  10. 10.
    Schneider, M. F., and Chandler, W. K., 1973, Voltage-dependent charge movement in skeletal muscle: A possible step in excitation-contraction coupling, Nature 242: 244–246.PubMedCrossRefGoogle Scholar
  11. 11.
    Kovacs, L., Rios, E., and Schneider, M. F., 1983, Measurement and modification of free calcium transients in frog skeletal muscle fibers by a metallochromic indicator dye, J. Physiol. 343: 161–196.PubMedGoogle Scholar
  12. 12.
    Melzer, W., Rios, E., and Schneider, M. F., 1984, Time course of calcium release and removal in skeletal muscle fibers, Biophys. J. 45: 637–641.PubMedCrossRefGoogle Scholar
  13. 13.
    Melzer, W., Rios, E., and Schneider, M. F., 1987, A general procedure for determining calcium release in skeletal muscle fibers, Biophys J. 51: 849–864.PubMedCrossRefGoogle Scholar
  14. 14.
    Brum, G., Rios, E., and Stefani, E., 1988, Effects of extracellular calcium on calcium movements of excitation-contraction coupling in frog skeletal muscle fibers, J. Physiol. 398: 441–473.PubMedGoogle Scholar
  15. 15.
    Brum, G., and Rios, E., 1987, Intramembrane charge movement in frog skeletal muscle fibers: Properties of charge 2, J. Physiol. 387: 489–517.PubMedGoogle Scholar
  16. 16.
    Lamb, G. D., 1987, Asymmetric charge movement in polarized and depolarized muscle fibers of the rabbit, J. Physiol. 376: 85–100.Google Scholar
  17. 17.
    Caputo, C., and Bolanos, P., 1988, Effect of D600 and La3+ on charge movement in depolarized muscle fibers, Biophys. J. 53: 604a.Google Scholar
  18. 18.
    Brum, G., Fitts, R., Pizarro, G., and Rios, E., 1988, Voltage sensors of the frog skeletal muscle membrane require calcium to function in excitation-contraction coupling, J. Physiol. 398: 475–505.PubMedGoogle Scholar
  19. 19.
    Caputo, C., 1972, The time course of potassium contractures of single-muscle fibers, J. Physiol. 223: 483–505.PubMedGoogle Scholar
  20. 20.
    Armstrong, C. M., Bezanilla, F. M., and Horowicz, P., 1972, Twitches in the presence of eth-yleneglycol bis (β-aminoethyl ether)-N,N’-tetraacetic acid, Biochim. Biophys. Acta 257: 605–608.Google Scholar
  21. 21.
    Aimers, W., McCleskey, E. W., and Palade, P. T., 1984, A nonselective cation conductance in frog muscle membrane blocked by micromolar external calcium ions, J. Physiol. 353: 565–583.Google Scholar
  22. 22.
    Pizarro, G., Brum, G., Fill, M., Fitts, R., Rodriguez, M., Uribe, I., and Rios, E., 1988, The voltage sensor of skeletal muscle excitation-contraction coupling: A comparison with calcium channels, in: The Calcium Channel: Structure, Function, and Implications, (Morad, M., Nayler, W., Schramm, M., and Kazda, S., eds.) Springer-Verlag, Heidelberg, pp. 138–156.CrossRefGoogle Scholar
  23. 23.
    Chandler, W. K., Rakowski, R. F., and Schneider, M. F., 1976. Effects of glycerol treatment and maintained depolarization on charge movement in skeletal muscle, J. Physiol. 254: 285–316.PubMedGoogle Scholar
  24. 24.
    Rakowski, R. F., 1981, Immobilization of membrane charge in frog skeletal muscle by prolonged depolarization, J. Physiol. 317: 129–148.PubMedGoogle Scholar
  25. 25.
    Reif, P., 1967, Fundamentals of Statistical and Thermal Physics, McGraw-Hill, New York.Google Scholar
  26. 26.
    Pizarro, G., Fitts, R., and Rios, E., 1988, Selectivity of a cation-binding membrane site essential for EC coupling in skeletal muscle, Biophys. J. 53: 645a.Google Scholar
  27. 27.
    McLaughlin, S. G. A., 1977, Electrostatic potentials at membrane-solution interfaces, in: Current Topics in Membrane Transport (F. Bronner and A. Kleinzeller, Eds.) vol. 9, pp. 71–144.CrossRefGoogle Scholar
  28. 28.
    McLaughlin, A., Eng, W. K., Vaio, G., Wilson, T., and McLaughlin, S. G. A., 1983, Dimethonium, a divalent cation that exerts only a screening effect on the electrostatic potential adjacent to negatively charged phospholipid bilayer membranes, J. Membrane Biol. 76: 183–193.CrossRefGoogle Scholar
  29. 29.
    Luttgau, H. C., and Spiecker, W., 1979, The effects of calcium deprivation upon mechanical and electrophysiological parameters in skeletal muscle fibers of the frog, J. Physiol. 296: 411–429.PubMedGoogle Scholar
  30. 30.
    Stefani, E., and Chiarandini, D. J., 1973, Skeletal muscle: Dependence of potassium contractures on extracellular calcium, Pflüg. Arch. 343: 143–150.CrossRefGoogle Scholar
  31. 31.
    Hess, P., Lansman, J. B., and Tsien, R. W., 1986, Calcium channel selectivity for divalent and monovalent cations: Voltage and concentration dependence of single-channel current in ventricular heart cells, J. Gen. Physiol. 88: 293–320.PubMedCrossRefGoogle Scholar
  32. 32.
    Lansman, J. B., Hess, P., Tsien, R. W., 1986, Blockade of current through single calcium channels by Cd2+, Mg2 +, and Ca2+: Voltage and concentration dependence of calcium entry into the pore, J. Gen. Physiol. 88: 321–348.PubMedCrossRefGoogle Scholar
  33. 33.
    Hille, B., 1984, Ionic Channels in Excitable Membranes, Sinauer, Sunderland, Massachusetts.Google Scholar
  34. 34.
    Eisenman, G., 1962, Cation-selective glass electrodes and their mode of operation, Biophys. J. 2(Suppl. 2): 259–323.PubMedCrossRefGoogle Scholar
  35. 35.
    Rios, E., and Brum, G., 1987, Involvement of dihydropyridine receptors in excitation-contraction coupling in skeletal muscle, Nature 325: 717–720.PubMedCrossRefGoogle Scholar
  36. 36.
    Rios, E., and Pizarro, G., 1988, The voltage sensors and calcium channels of excitation-contraction coupling, NIPS 3: 223–227.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Eduardo Ríos
    • 1
  • Robert Fitts
    • 1
  • Ismael Uribe
    • 1
  • Gonzalo Pizarro
    • 1
  • Gustavo Brum
    • 2
  1. 1.Department of PhysiologyRush UniversityChicagoUSA
  2. 2.Departamento de Biofísica, Facultad de MedicinaUniversidad de la RepúblicaMontevideoUruguay

Personalised recommendations