Advertisement

Molecular Architecture of T-SR Junctions: Evidence for a Junctional Complex That Directly Connects the Two Membrane Systems

  • Clara Franzini-Armstrong
  • Barbara Block
  • Donald G. Ferguson
Part of the Series of the Centro de Estudios Científicos de Santiago book series (SCEC)

Abstract

Contraction of all types of muscle fibers is activated by an increase in the cytoplasmic concentration of calcium ions. In the skeletal muscle fibers of vertebrates the calcium required for activation is released rapidly from an internal membrane system, the sarcoplasmic reticulum (SR). In other muscles release from the SR and influx through the surface membrane may contribute in variable proportion to the increase of intracellular calcium needed for myofibrillar activation. Most striated muscle fibers have extensive tubular invaginations of the surface membrane, forming networks called the transverse (T) tubular systems. Individual components are called transverse (T) tubules, even though their orientation is not always transverse to the long axis of the fiber.

Keywords

Black Reaction Striate Muscle Fiber Dihydropyridine Receptor Calcium Release Channel Skeletal Muscle Sarcoplasmic Reticulum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Huxley, A. P., and Taylor, R. E., 1958, Local activation of striated muscle fibers, J. Physiol. (Lond). 144: 426–441.Google Scholar
  2. 2.
    Porter, K. R., and Palade, G. E., 1957, Studies of the endoplasmic reticulum. III. Its form and distribution in striated muscle cells, J. Biophys. Biochem. Cytol. 3: 269–300.PubMedCrossRefGoogle Scholar
  3. 3.
    Andersson-Cedergren, E., 1959, Ultrastructure of motor end plate and sarcoplasmic components of mouse skeletal muscle fibers, J. Ultrastructure Res. Suppl. 1: 1–191.Google Scholar
  4. 4.
    Hodgkin, A. L., and Horowicz, P., 1960, Potassium contractures in single muscle fibers, J. Physiol. (Lond.) 153: 386–403.Google Scholar
  5. 5.
    Franzini-Armstrong, C., 1970, Studies of the triad. I. Structure of the junction in frog twitch fibers, J. Cell. Biol. 47: 488–499.PubMedCrossRefGoogle Scholar
  6. 6.
    Peachey, L. D., 1961, Structure of the longitudinal body muscles of amphioxus, J. Biophys. Biochem. Cytol. 10(Suppl. 4): 159–178.PubMedCrossRefGoogle Scholar
  7. 7.
    Sanger, J. W., 1971, Sarcoplasmic reticulum in the cross-striated adductor muscle of the bay scallop Aquipecten iridians, Z. Zeilforsch. 118: 156–161.CrossRefGoogle Scholar
  8. 8.
    Nunzi, M. G., and Franzini-Armstrong, C., 1981, The structure of smooth and striated portions of the adductor muscle of the valves in a scallop, J. Ultrastructure Res. 76: 134–148.CrossRefGoogle Scholar
  9. 9.
    Grocki, K., 1981, Ultrastruktur der Pumpfmuskulatur von Branchiostoma Lanceolatum, dissertation thesis, Ruhr Universität Bochum.Google Scholar
  10. 10.
    Jorgensen, A. O., Shen, A. C. Y., MacLennan, D. H., and Tokuyasu, K. T., 1982, Ultrastructural localization of the Ca2+, Mg2+ -dependent ATPase of sarcoplasmic reticulum in rat skeletal muscle by immunoferritin labelling of ultrathin frozen sections, J. Cell. Biol. 92: 409–416.PubMedCrossRefGoogle Scholar
  11. 11.
    Franzini-Armstrong, C., 1974, Freeze-fracture of striated muscle from a spider: Structural differentiations of sarcoplasmic reticulum and transverse tubular system membranes, J. Cell. Biol. 61: 501–513.CrossRefGoogle Scholar
  12. 12.
    Campbell, K. R., Franzini-Armstrong, C., and Shamoo, A. E., 1980, Further characterization of light and heavy sarcoplasmic reticulum vesicles: Identification of the sarcoplasmic reticulum feet associated with heavy sarcoplasmic reticulum vesicles, Biochem. Biophys. Acta 602: 97–116.PubMedCrossRefGoogle Scholar
  13. 13.
    Meissner, G., 1975, Isolation and characterization of two types of sarcoplasmic reticulum vesicles, Biochim. Biophys. Acta 389: 51–68.PubMedCrossRefGoogle Scholar
  14. 14.
    Ferguson, D. G., Schwartz, H., and Franzini-Armstrong, C., 1984, Subunit structure of junctional feet in triads of skeletal muscle: A freeze-drying, rotary-shadowing study, J. Cell. Biol. 99: 1735–1742.PubMedCrossRefGoogle Scholar
  15. 15.
    Kawamoto, R. M., Brunschwig, J. P., Kim, K. C., and Caswell, A. H., 1986, Isolation, localization, and characterization of the spanning protein of the skeletal muscle triad, J. Cell. Biol. 103: 1405–1414.PubMedCrossRefGoogle Scholar
  16. 16.
    Volpe, P., Gutweniger, H. E., Montecucco, C., 1987, Photolabelling of the integral proteins of skeletal muscle sarcoplasmic reticulum: Comparison of junctional and nonjunctional membrane fractions, Arch. Biochim. Biophys. 253: 138–145.CrossRefGoogle Scholar
  17. 17.
    Lai, F. A., Erickson, H. P., Block, B. A., and Meissner, G., 1986, Evidence for a junctional feet-ryanodine receptor complex from sarcoplasmic reticulum, Biochem. Biophys. Res. Comm. 143: 704–709.CrossRefGoogle Scholar
  18. 18.
    Inui, M., Saito, A., and Fleischer, S., 1987, Purification of the ryanodine receptor and identity with feet structures of junctional terminal cisternae of sarcoplasmic reticulum from fast skeletal muscle, J. Biol. Chem. 262: 1740–1747.PubMedGoogle Scholar
  19. 19.
    Campbell, K. P., Knudson, C. M., Imagawa, T., Leung, A. T., Sutko, J. L., Kahl, S. D., Raab, C. R., and Madson, L., 1987, Identification and characterization of the high-affintiy (3H)ryanodine receptor of the junctional sarcoplasmic reticulum Ca2+ release channel, J. Biol. Chem. 262: 6460–6463.PubMedGoogle Scholar
  20. 20.
    Lai, F. A., Erickson, H. P., Rousseau, E., Liu, Q. Y., and Meissner, G., 1988, Purification and reconstitution of the calcium release channel from skeletal muscle, Nature 331: 315–320.PubMedCrossRefGoogle Scholar
  21. 21.
    Smith, J. S., Coronado, R., and Meissner, G., 1986, Single-channel measurements of the calcium release channel from skeletal muscle sarcoplasmic reticulum: Activation by Ca2+, ATP, and modulation by Mg2+, J. Gen. Physiol. 88: 573–588.PubMedCrossRefGoogle Scholar
  22. 22.
    Corbett, A. M., Caswell, A. R., Brandt, N. R., and Brunschwig, J-P., 1985, Determinants of triad junction reformation: Isolation and identification of an endogenous promoter of junction reformation in skeletal muscle, J. Membrane Biol. 86: 267–276.CrossRefGoogle Scholar
  23. 23.
    Leung, A., Imagawa, T., Block, B., Franzini-Armstrong, C., and Campbell, K. P., 1988, Biochemical and ultrastructual characterization of the dihydropyridine receptor from rabbit skeletal muscle: Evidence for a 52 kilodalton subunit, J. Biol. Chem. 263: 994–1001.PubMedGoogle Scholar
  24. 24.
    Block, B., Imagawa, T., Campbell, K. P., and Franzini-Armstrong, C., 1988, Structural evidence for direct interaction between the molecular components of the T-SR junction in skeletal muscle, J. Cell. Biol. 107: 2587–2600.PubMedCrossRefGoogle Scholar
  25. 25.
    Franzini-Armstrong, C., Kenney, L., and Varriano-Marston, E., 1987, The structure of calse-questrin in triads of vertebrate muscle, J. Cell. Biol. 105: 49–56.PubMedCrossRefGoogle Scholar
  26. 26.
    Schneider, M. F., and Chandler, W. K., 1973, Voltage-dependent charge movement in skeletal muscle: A possible step in excitation-contraction coupling, Nature 242: 747–751.CrossRefGoogle Scholar
  27. 27.
    Rios, E., and Brum, G., 1987, Involvement of dihydropyridine receptors in excitation-contraction coupling in skeletal muscle, Nature 325: 717–720.PubMedCrossRefGoogle Scholar
  28. 28.
    Hannon, J. D., Lee, N. K. M., and Blinks, J. R., 1988, Calcium release by inositol triphosphate in amphibian and mammalian skeletal muscle is an artifact of cell disruption and probably results from depolarization of sealed-off T-tubules, Biophys. J. 53: 607a.Google Scholar
  29. 29.
    Katz, B., 1966, Nerve, Muscle, and Synapse, McGraw-Hill, New York.Google Scholar
  30. 30.
    Peachey, L. D., and Franzini-Armstrong, C., 1983, Structure and function of membrane systems of skeletal muscle, in: Handbook of Physiology, Section 10: Skeletal Muscle (L. D. Peachey, R. H. Adrian, and S. R. Geiger, Eds.), Chapter 2, pp. 237–71, American Physiology Society, Bethesda, MD.Google Scholar
  31. 31.
    Franzini-Armstrong, C., 1986, The sarcoplasmic reticulum and the transverse tubules, in: Myology (A. G. Engel and B. Q. Banker, Eds.), pp. 125–154. McGraw-Hill, New York.Google Scholar
  32. 32.
    Page, S. G., 1965, A comparison of the fine structure of frog slow and twitch muscle fibers, J. Cell. Biol. 26: 477–497.PubMedCrossRefGoogle Scholar
  33. 33.
    Franzini-Armstrong, C., 1973, Studies of the triad. IV. Structure of the junction in frog slow fibers, J. Cell. Biol. 56: 120–128.PubMedCrossRefGoogle Scholar
  34. 34.
    Franzini-Armstrong, C., Eastwood, A. E., and Peachey, L. D., 1986, Shape and disposition of clefts, tubules, and sarcoplasmic reticulum in long- and short-sarcomere fibers of crab and crayfish, Cell Tissue Res. 244: 9–19.PubMedCrossRefGoogle Scholar
  35. 35.
    Franzini-Armstrong, C., Gilly, W. F., Aladjem, E., and Appelt, D., 1987, Golgi stain identifies three types of fibers in fish muscle, J. Muscle. Res. Cell. Motility 8: 418–427.CrossRefGoogle Scholar
  36. 36.
    Veratti, E., 1961, Investigations on the fine structure of the striated muscle fiber, J. Biophys. Biochem. Cytol. 10(4): 3–59.CrossRefGoogle Scholar
  37. 37.
    Franzini-Armstrong, C., and Peachey, L. D., 1982, A modified Golgi black reaction method for light and electron microscopy, J. Histochem. Cytochem. 30: 99–105.PubMedCrossRefGoogle Scholar
  38. 38.
    Franzini-Armstrong, C., Champ, C., and Ferguson, D. G., 1988, Discrimination between fast- and slow-twitch fibers of guinea pig skeletal muscle using the relative surface density of junctional transverse tubule membrane, J. Muscle Res. Cell Motility 9: 403–414.CrossRefGoogle Scholar
  39. 39.
    Burke, R. E., and Tsairis, P., 1974, The correlation of physiological properties with histochemical characteristics in single muscle units, Ann. N.Y. Acad. Sci. 228: 145–159.PubMedCrossRefGoogle Scholar
  40. 40.
    Franzini-Armstrong, C., and Nunzi, G., 1983, Junctional feet and membrane particles in the triads of a fast twitch muscle fiber, J. Muscle Res. Cell Motility 4: 233–252.CrossRefGoogle Scholar
  41. 41.
    Franzini-Armstrong, C., 1984, Freeze-fracture of frog slow tonic fibers: Structure of surface and internal membranes, Tissue and Cell 16(3): 146–166.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Clara Franzini-Armstrong
    • 1
  • Barbara Block
    • 2
  • Donald G. Ferguson
    • 3
  1. 1.Department of AnatomyUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Departments of Biology and AnatomyUniversity of PennsylvaniaPhiladelphiaUSA
  3. 3.Department of Physiology and BiophysicsUniversity of CincinnatiCincinnatiUSA

Personalised recommendations