Advertisement

Role of Slow Inward Calcium Current in Excitation-Contraction Coupling

  • Vincent Jacquemond
  • Oger Rougier
Part of the Series of the Centro de Estudios Científicos de Santiago book series (SCEC)

Abstract

The role of external calcium in the process of excitation-contraction coupling of skeletal muscle fibers had been investigated extensively. Removal of external calcium has been shown to not prevent the contractile activation, but it does have distinct effects on contracture amplitude and duration and on the voltage-dependence of contractile inactivation.(1–5) Furthermore, it has been demonstrated recently that the magnitude and time course of myoplasmic calcium transients elicited by membrane depolarization depend strongly on extracellular calcium.(6)

Keywords

Contractile Response Slow Phase Calcium Current Skeletal Muscle Fiber Voltage Sensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Almers, W., Fink, R., and Palade, P. T., 1981, Calcium depletion in frog muscle tubules: The decline of calcium current under maintained depolarization, J. Physiol. 312: 177–207.PubMedGoogle Scholar
  2. 2.
    Luttgau, H. C., and Spiecker, W., 1979, The effects of calcium deprivation upon mechanical and electrophysiological parameters in skeletal muscle fibers of the frog, J. Physiol. 296: 411–429.PubMedGoogle Scholar
  3. 3.
    Cota, G., and Stefani, E., 1981, Effects of external calcium reduction on the kinetics of potassium contractures in frog twitch muscle fibers, J. Physiol. 317: 303–316.PubMedGoogle Scholar
  4. 4.
    Graf, F., and Schatzmann, H. J., 1984, Some effects of removal of external calcium on pig striated muscle. J. Physiol., 349: 1–13.PubMedGoogle Scholar
  5. 5.
    Bolanos, P., Caputo, C., and Velaz, L., 1986, Effects of calcium, barium, and lanthanum on depolarization-contraction coupling in skeletal muscle fibers of Rana pipiens, J. Physiol. 370: 39–60.Google Scholar
  6. 6.
    Brum, G., Rios, E., and Stefani, E., 1988, Effects of extracellular calcium on calcium movements of excitation-contraction coupling in frog skeletal muscle fibers, J. Physiol. 398: 441–473.PubMedGoogle Scholar
  7. 7.
    Sanchez, J. A., and Stefani, E., 1978, Inward Ca2+ current in twitch muscle fibers of the frog, J. Physiol. 283: 197–209.PubMedGoogle Scholar
  8. 8.
    Potreau, D., and Raymond, G., 1980, Calcium-dependent electrical activity and contraction of voltage-clamped frog single muscle fibers, J. Physiol. 307: 9–22.PubMedGoogle Scholar
  9. 9.
    Caputo, C., 1981, Nickel substitution for calcium and the time course of potassium contractures of single muscle fibers, J. Muse. Res. Cell. Motility 2: 167–182.CrossRefGoogle Scholar
  10. 10.
    Lorkovic, H., and Rudel, R., 1983, Influence of divalent cations on potassium contracture duration in frog muscle fibers, Pflüg. Arch. 398: 114–119.CrossRefGoogle Scholar
  11. 11.
    Brum, G., Stefani, E., and Rios, E., 1987, Simultaneous measurements of Ca2+ currents and intracellular Ca2+ concentrations in single skeletal muscle fibers of the frog, Can. J. Physiol. Pharmacol. 65: 681–685.PubMedCrossRefGoogle Scholar
  12. 12.
    Ildefonse, M., Jacquemond, V., Rougier, O., Renaud, J. F., Fosset, M., and Lazdunski, M., 1985, Excitation-contraction coupling in skeletal muscle: Evidence for a role of slow Ca2+ -channels using Ca2+-channel activators and inhibitors in the dihydropyridine series, Biochem. Biophys. Res. Commun. 129: 904–909.PubMedCrossRefGoogle Scholar
  13. 13.
    Rakowski, R. F., Olszewska, E., and Paxson, C., 1987, High-affinity effect of nifedipine on K contracture in skeletal muscle suggests a role for calcium channels in excitation-contraction coupling, Biophys. J. 51: 550a.Google Scholar
  14. 14.
    Rios, E., and Brum, G., 1987, Involvement of dihydropyridine receptors in excitation-contraction coupling in skeletal muscle, Nature 325: 717–720.PubMedCrossRefGoogle Scholar
  15. 15.
    Gamboa-Aldeco, R., Huerta, M., and Stefani, E., 1988, Effect of Ca2+ -channel blockers on K+ contractures in twitch fibers of the frog (Rana pipiens), J. Physiol. 397: 389–399.PubMedGoogle Scholar
  16. 16.
    Jacquemond, V., and Rougier, O., 1988, Nifedipine and Bay K inhibit contraction independently from their action on calcium channels, Biochem. Biophys. Res. Commun. 152: 1002–1007.PubMedCrossRefGoogle Scholar
  17. 17.
    Lamb, G. D., and Walsh, T., 1987, Calcium currents, charge movement, and dihydropyridine binding in fast- and slow-twitch muscles of rat and rabbit, J. Physiol. 393: 595–617.PubMedGoogle Scholar
  18. 18.
    Brum, G., Fitts, R., Pizarro, G., and Rios, E., 1988, Voltage sensors of the frog skeletal muscle membrane require calcium to function in excitation-contraction coupling, J. Physiol. 398: 475–505.PubMedGoogle Scholar
  19. 19.
    Caille, J., Ildefonse, M., and Rougier, O., 1978, Existence of a sodium current in the tubular membrane of frog twitch muscle fiber: Its possible role in the activation of contraction, Pflüg. Arch. 379: 117–119.Google Scholar
  20. 20.
    Nerbonne, J. M., Richard, S., and Nargeot, J., 1985, Ca2+ -channels are unblocked within a few milliseconds after photoconversion of nifedipine, J. Mol. Cell. Cardiol. 17: 511–515.PubMedCrossRefGoogle Scholar
  21. 21.
    Raymond, G., and Potreau, D., 1981, Effets des anesthesiques locaux (procaine, tetracaine) sur la permebilitecalcique lente et la contraction de la fibre musculaire squelettique de grenouille, C. r. hebd. Seanc. Acad. Sci. Paris III 292: 637–640.Google Scholar
  22. 22.
    Gonzalez-Serratos, H., Valle Aguilera, R., Lathrop, D. A., and Del Carmen Garcia, M., 1982, Slow inward Ca currents have no obvious role in muscle excitation-contraction coupling, Nature 298: 292–294.PubMedCrossRefGoogle Scholar
  23. 23.
    Lorkovic, 1967, Effects of divalent cations on frog twitch muscles, Am. J. Physiol. 212: 623–628.PubMedGoogle Scholar
  24. 24.
    Aimers, W., Fink, R., and Palade, P. T., 1981, Calcium depletion in frog muscle tubules: The decline of calcium current under maintained depolarization, J. Physiol. 312: 177–207.Google Scholar
  25. 25.
    Vergara, J., Tsien, R. Y., and Delay, M., 1985, Inositol 1,4,5-trisphosphate: A possible chemical link in excitation-contraction coupling in skeletal muscle, Proc. Natl. Acad. Sci. USA 82: 6352–6356.PubMedCrossRefGoogle Scholar
  26. 26.
    Lamb, G. D., 1986, Components of charge movement in rabbit skeletal muscle: The effect of tetracaine and nifedipine, J. Physiol. 376: 85–100.PubMedGoogle Scholar
  27. 27.
    Tsien, R. W., 1987, Calcium currents in heart cells and neurons, in: Neuromodulation (L. K. Kaczmarek and I. B. Levitan, Eds.) pp. 206–242, Oxford University Press, Oxford.Google Scholar
  28. 28.
    Vassort, G., and Rougier, O., 1972, Membrane potential and slow inward current dependence of frog cardiac mechanical activity, Pflüg. Arch. 331: 191–203.CrossRefGoogle Scholar
  29. 29.
    Fabiato, A., and Fabiato, F., 1977, Calcium release from the sarcoplasmic reticulum, Circ. Res. 40: 119–129.PubMedGoogle Scholar
  30. 30.
    Hodgkin, A. L., and Horowicz, P., 1960, Potassium contractures in single muscle fibers, J. Physiol. 153: 386–403.PubMedGoogle Scholar
  31. 31.
    Fosset, M., Jaimovich, E., Delpont, E., and Lazdunski, M., 1983, [3H]Nitrendipine receptors in skeletal muscle: Properties and preferential localization in transverse tubules, J. Biol. Chem. 258: 6086–6092.PubMedGoogle Scholar
  32. 32.
    Schneider, M. F., and Chandler, W. K., 1973, Voltage-dependent charge movement in skeletal muscle: A possible step in excitation-contraction coupling, Nature 242: 244–246.PubMedCrossRefGoogle Scholar
  33. 33.
    Mathias, R. T., Levis, R. A., and Eisenberg, R. S., 1980, Electrical models of excitation-contraction coupling and charge movement in skeletal muscle, J. Gen. Physiol. 76: 1–31.PubMedCrossRefGoogle Scholar
  34. 34.
    Caille, J., Ildefonse, M., Roy, G., and Rougier, O., 1981, Surface and tubular sodium currents in frog twitch muscle fiber: Implication in excitation-contraction coupling, in: Molecular Aspects of Muscle Function (E. Varga, A. Kover, T. Kovacs, and L. Kovacs, Eds.), pp. 389–409, Pergamon, Oxford, England.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Vincent Jacquemond
    • 1
  • Oger Rougier
    • 1
  1. 1.Laboratoire de Physiologie des Elements ExcitablesUniversité Claude BernardVilleurbanne CedexFrance

Personalised recommendations