Biochemical Structure of the Dihydropyridine Receptor

  • Jane A. Talvenheimo
  • Shu-Rong Wen
  • Kyung Sook Kim
  • Anthony H. Caswell
Part of the Series of the Centro de Estudios Científicos de Santiago book series (SCEC)


When radiolabeled dihydropyridine compounds first became available, they opened up a wide area of investigation for researchers interested in the biochemical structure of voltage-dependent Ca2+ -channels. Dihydropyridines (DHPs) were seen to bind to a high-affinity site closely associated with an important class of Ca2+ -channels (designated DHP-sensitive Ca2+ -channels), and provided the first tools for identifying and extracting the Ca2+ -channel protein from membranes. Investigations of the DHP recep-tor/Ca2+ -channel protein have focused on three different approaches for identifying the high-affinity DHP-binding protein: (i) radiation inactivation of the binding activity to determine the target size of the receptor, (ii) solubilization and purification of the binding activity from membranes, and (iii) photoaffinity labeling of the drug receptor in intact membranes. Nearly all of these studies have been performed using skeletal muscle transverse tubule membranes (T-tubules), a well-characterized membrane fraction(1) as a source of DHP receptors. T-tubule membranes contain the highest density of DHP binding sites (from 10 to 100 pmol of binding sites per mg membrane protein) of any tissue surveyed for DHP-binding activity. The goal of this chapter is to briefly review what is known about the protein structure of the T-tubule DHP receptor/Ca2+ -channel, to present some data on the purification and reconstitution of the DHP receptor, and to highlight some of the unanswered questions regarding the structure and possible functional role of this protein.


Skeletal Muscle Conductance Level Planar Lipid Bilayer Rabbit Skeletal Muscle Frog Skeletal Muscle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hidalgo, C., 1986, Isolation of muscle membranes containing functional ionic channels, in: Ionic Channels in Cells and Model Systems (R. Latorre, Ed.), pp. 101–125, Plenum, New York.Google Scholar
  2. 2.
    Norman, R. I., Borsotto, M., Fosset, M., Lazdunski, M., and Ellory, J., 1983, Determination of the molecular size of the nitrendipine-sensitive Ca2 +-channel by radiation inactivation, Biochem. Biophys. Res. Comm. 111: 121–127.CrossRefGoogle Scholar
  3. 3.
    Goll, A., Ferry, D., and Glossmann, H., 1983, Target size analysis of skeletal muscle Ca2+ -channels: Positive allosteric heterotropic regulation by D-cis-diltiazem is associated with apparent channel oligomer dissociation, FEBS Lett. 157: 63–69.PubMedCrossRefGoogle Scholar
  4. 4.
    Curtis, B. M., and Catterall, W. A., 1983, Solubilization of the calcium antagonist receptor from rat brain, J. Biol. Chem. 258: 7280–7283.PubMedGoogle Scholar
  5. 5.
    Glossmann, H., and Ferry, D. R., 1983, Solubilization and partial purification of putative calcium channels labelled with [3H]-nimodipine, Naunyn-Schmied. Arch. Pharmacol. 323: 279–291.CrossRefGoogle Scholar
  6. 6.
    Borsotto, M., Norman, R. I., Fosset, M., and Lazdunski, M., 1984, Solubilization of the nitrendipine receptor from skeletal muscle transverse tubule membranes, Eur. J. Biochem. 142: 449–455.PubMedCrossRefGoogle Scholar
  7. 7.
    Curtis, B. M., and Catterall, W. A., 1984, Purification of the calcium antagonist receptor of the voltage-sensitive calcium channel from skeletal muscle transverse tubules, Biochemistry 23: 2113–2118.PubMedCrossRefGoogle Scholar
  8. 8.
    Borsotto, M., Barhanin, J., Norman, R. I., and Lazdunski, M., 1984, Purification of the di-hydropyridine receptor of the voltage-dependent Ca2+ -channel from skeletal muscle transverse tubules using (+)[3H]PN200–110, Biochem. Biophys. Res. Comm. 122: 1357–1366.PubMedCrossRefGoogle Scholar
  9. 9.
    Borsotto, M., Barhanin, J., Fosset, M., and Lazdunski, M., 1985, The 1,4-dihydropyridine receptor associated with the skeletal muscle voltage-dependent Ca2+ -channel, J. Biol. Chem. 260: 14255–14263.PubMedGoogle Scholar
  10. 10.
    Flockerzi, V., Oeken, H.-J., and Hofmann, F., 1986, Purification of a functional receptor for calcium-channel blockers from rabbit skeletal muscle microsomes, Eur. J. Biochem. 161: 217–224.PubMedCrossRefGoogle Scholar
  11. 11.
    Talvenheimo, J. A., Worley III J. F., and Nelson, M. T., 1987, Heterogeneity of calcium channels from a purified dihydropyridine receptor preparation, Biophys. J. 52: 891–899.PubMedCrossRefGoogle Scholar
  12. 12.
    Sieber, M., Nastainczyk, W., Zubor, V., Wernet, W., and Hofmann, R., 1987, The 165 KDa peptide of the purified skeletal muscle dihydropyridine receptor contains the known regulatory sites of the calcium channel, Eur. J. Biochem. 167: 117–122.PubMedCrossRefGoogle Scholar
  13. 13.
    Leung, A. T., Imagawa, T., and Campbell, K. P., 1987, Structural characterization of the 1,4-dihydropyridine receptor of the voltage-dependent Ca2+ -channel from rabbit skeletal muscle, J. Biol. Chem. 262: 7943–7946.PubMedGoogle Scholar
  14. 14.
    Cooper, C. L., Vandaele, S., Barhanin, J., Fbsset, M., Lazdunski, M., and Hosey, M. M., 1987, Purification and characterization of the dihydropyridine-sensitive voltage-dependent calcium channel from cardiac tissue, J. Biol. Chem. 262: 509–512.PubMedGoogle Scholar
  15. 15.
    Takahashi, M., and Catterall, W. A., 1987, Identification of an α-subunit of dihydropyridine-sensitive brain calcium channels, Science 236: 88–91.PubMedCrossRefGoogle Scholar
  16. 16.
    Ferry, D. R., Goll, A., and Glossmann, H., 1987, Photoaffinity labelling of the cardiac calcium channel. (-)-[3H]azidopine labels a 165 kDa polypeptide, and evidence against a [3H]-1,4-di-hydropyridine-isothiocyanate being a calcium channel-specific affinity ligand, Biochem. J. 243: 127–135.PubMedGoogle Scholar
  17. 17.
    Vaghy, P. L., Striessnig, J., Miwa, K., Knaus, H.-G., Itagaki, K., McKenna, E., Glossmann, H., and Schwartz, A., 1987, Identification of a novel 1,4-dihydropyridine- and phenylakylamine-binding polypeptide in calcium channel preparations, 7. Biol. Chem. 262: 14337–14342.Google Scholar
  18. 18.
    Kuo, T. H., Johnson, D. F., Tsang, W., and Wiener, J., 1987, Photoaffinity labeling of the calcium channel antagonist receptor in the heart of the cardiomyopathy hamster, Biochem. Biophys. Res. Comm. 148: 926–933.PubMedCrossRefGoogle Scholar
  19. 19.
    Ferry, D. R., Kampf, K., Goll, A., and Glossmann, H., 1985, Subunit composition of skeletal muscle transverse tubule calcium channels evaluated with the 1,4-dihydropyridine photoaffinity probe 3H-azidopine, EMBO J. 4: 1933–1940.PubMedGoogle Scholar
  20. 20.
    Home, P., Triggle, D. J., and Venter, J. C., 1984, Nitrendipine and isoproterenol induce phosphorylation of a 42 K dalton protein that comigrates with affinity-labeled calcium channel regulatory subunit, Biochem. Biophys. Res. Comm. 121: 890–898.CrossRefGoogle Scholar
  21. 21.
    Sarmiento, J. G., Epstein, P. M., Smilowitz, H., Chester, P. N., Wehinger, E., and Janis, R. A., 1985, Photoaffinity labeling of the 1,4-dihydropyridine Ca2+ -channel binding site in cardiac, skeletal, and smooth muscle membranes, Fed. Proc. 44: 164.Google Scholar
  22. 22.
    Campbell, K. P., Lipschutz, G. M., and Denney, G. H., 1984, Direct photoaffinity labeling of the high-affinty nitrendipine-binding site in subcellular membrane fractions isolated from canine myocardium. J. Biol. Chem. 259: 5384–5387.PubMedGoogle Scholar
  23. 23.
    Galizzi, D.-P., Borsotto, M., Barhanin, J., Fosset, M., and Lazdunski, M., 1986, Characterization and photoaffinity labeling of receptor sites for the Ca2+ -channel inhibitors D-cis-diltiazem, (+/-)-bepridil, desmethoxyverapamil, and (+)-PN200–110 in skeletal muscle transverse tubule membranes, J. Biol. Chem. 261: 1393–1397.PubMedGoogle Scholar
  24. 24.
    Takahashi, M., Seagar, M. J., Jones, J. F., Reber, B. F. X, and Catterall, W. A., 1987, Subunit structure of dihydropyridine-sensitive calcium channels from skeletal muscle, Proc. Natl. Acad. Sci. USA 84: 5478–5482.PubMedCrossRefGoogle Scholar
  25. 25.
    Sharp, A. H., Imagawa, T., Leung, A. T., and Campbell, K. P., 1987, Identification and characterization of the dihydropyridine-binding subunit of the skeletal muscle dihydropyridine receptor, J. Biol. Chem. 262: 12309–12315.PubMedGoogle Scholar
  26. 26.
    Striessnig, J., Moosburger, K., Goll, D., Ferry, D. R., and Glossmann, H., 1986, Stereoselective photoaffinity labeling of the purified 1,4-dihydropyridine receptor of the voltage-dependent calcium channel, Eur. J. Biochem. 161: 217–224.CrossRefGoogle Scholar
  27. 27.
    Schmid, A., Barhanin, J., Coppola, T., Borsotto, M., and Lazdunski, M., 1986, Immunochemical analysis of subunit structures of 1,4-dihydropyridine receptors associated with voltage-dependent Ca2 + -channels in skeletal, cardiac, and smooth muscles, Biochemistry 25: 3492–3495.PubMedCrossRefGoogle Scholar
  28. 28.
    Takahashi, M., and Catterall, W. A., 1987, Dihydropyridine-sensitive calcium channels in cardiac and skeletal muscle membranes: Studies with antibodies against the α-subunits, Biochemistry 26: 5518–5526.PubMedCrossRefGoogle Scholar
  29. 29.
    Norman, R. I., Burgess, A. J., Allen, E., and Harrison, T. M., 1987, Monoclonal antibodies against the 1,4-dihdropyridine receptor associated with voltage-sensitive Ca2+ -channels detect similar polypeptides from a variety of tissues and species, FEBS Lett. 212: 127–132.PubMedCrossRefGoogle Scholar
  30. 30.
    Vandaele, S., Fosset, M., Galizzi, J.-P., and Lazdunski, M., 1987, Monoclonal antibodies that coimmunoprecipitate the 1,4-dihhydropyridine and phenylalkylamine receptors and reveal the Ca2 + -channel structure, Biochemistry 26: 5–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Morton, M. E., and Froehner, S. C., 1987, Monoclonal antibody identifies a 200 kDa subunit of the dihydropyridine-sensitive calcium channel, J. Biol. Chem. 262: 11904–11907.PubMedGoogle Scholar
  32. 32.
    Leung, A. T, Imagawa, T, Block, B., Franzini-Armstrong, C., and Campbell, K. P., 1988, Biochemical and ultrastructural characterization of the 1,4-dihydropyridine receptor from rabbit skeletal muscle, J. Biol Chem. 263: 994–1001.PubMedGoogle Scholar
  33. 33.
    Malouf, N. N., Coronado, R., McMahon, D., Meissner, G., and Gillespie, G. Y., 1987, Monoclonal antibody specific for the transverse tubular membrane of skeletal muscle activates the dihydropyridine-sensitive Ca2+-channel, Proc. Natl. Acad. Sci. USA 84: 5019–5023.PubMedCrossRefGoogle Scholar
  34. 34.
    Morton, M. E., Caffrey, J. M., Brown, A. M., and Froehner, S. C., 1988, Monoclonal antibody to the α1-ubunit of the dihydropyridine-binding complex inhibits calcium currents in BC3H1myocytes, J. Biol. Chem. 263: 613–616.PubMedGoogle Scholar
  35. 35.
    Osterrieder, W., Brum, G., Hescheler, J., Trautwein, W., Flockerzi, V., and Hofmann, F., 1982, Injection of subunits of cyclic AMP-dependent protein kinase into cardiac myocytes modulates Ca2+ current, Nature 298: 576–578.PubMedCrossRefGoogle Scholar
  36. 36.
    Cachelin, A. B., de Peyer, J. E., and Kokubun, S., and Reuter, H., 1983, Ca2+-channel modulation by 8-bromocyclic AMP in cultured heart cells, Nature 304: 462–464.PubMedCrossRefGoogle Scholar
  37. 37.
    Brum, G., Flockerzi, V., Hofmann, F., Osterrieder, W., and Trautwein, W., 1983, Injection of catalytic subunit of cAMP-dependent protein kinase into isolated cardiac myocytes, Nature 298: 576–578.Google Scholar
  38. 38.
    Bean, B. P., Nowycky, M. C., and Tsien, R. W., 1984, β-adrenergic modulation of calcium channels in frog ventricular heart cells, Nature 307: 371–375.PubMedCrossRefGoogle Scholar
  39. 39.
    Curtis, B. M., and Catterall, W. A., 1985, Phosphorylation of the calcium antagonist receptor of the voltage-sensitive calcium channel by cAMP-dependent protein kinase, Proc. Natl. Acad. Sci. USA 82: 2528–2532.PubMedCrossRefGoogle Scholar
  40. 40.
    Hosey, M. M., Borsotto, M., and Lazdunski, M., 1986, Phosphorylation and dephosphorylation of dihydropyridine-sensitive voltage-dependent Ca2+ -channel in skeletal muscle membranes by cAMP-and Ca2 + -dependent processes, Proc. Natl. Acad. Sci. USA 83: 3733–3737.PubMedCrossRefGoogle Scholar
  41. 41.
    Nastainczyk, W., Rohrkasten, A., Sieber, M., Rudolph, C., Schachtele, C., Marme, D., and Hofmann, F., 1987, Phosphorylation of the purified receptor for calcium-channel blockers by cAMP kinase and protein kinase C., Eur. J. Biochem. 169: 137–142.PubMedCrossRefGoogle Scholar
  42. 42.
    Flockerzi, V., Oeken, H.-J., Hofmann, F., Pelzer, D., Cavalie, A., and Trautwein, W., 1986, Purified dihydropyridine-binding site from skeletal muscle T-tubules is a functional calcium channel, Nature 323: 66–68.PubMedCrossRefGoogle Scholar
  43. 43.
    Imagawa, T., Leung, A. T, and Campbell, K. P., 1987, Phosphorylation of the 1,4-dihydropyridine receptor of the voltage-dependent Ca2+ -channel by an intrinsic protein kinase in isolated triads from rabbit skeletal muscle, J. Biol. Chem. 262: 8333–8339.PubMedGoogle Scholar
  44. 44.
    Hosey, M. M., Barhanin, J., Schmid, A., Vandaele, S., Ptasienski, J., O’Callahan, C., Cooper, C., and Lazdunski, M., 1987, Photoaffinity labeling and phosphorylation of a 165-kDa peptide associated with dihydropyridine and phenylalklamine-sensitive calcium channels, Biochem. Biophys. Res. Comm. 147: 1137–1145.PubMedCrossRefGoogle Scholar
  45. 45.
    Tanabe, T., Takeshima, H., Mikami, A., Flockerzi, V., Takahashi, H., Kangawa, K., Kojima, M., Matsuo, H., Hirose, T., and Numa, S., 1987, Primary structure of the receptor for calcium-channel blockers from skeletal muscle, Nature 328: 313–318.PubMedCrossRefGoogle Scholar
  46. 46.
    Aimers, W., Fink, R., and Palade, P. T, 1981, Calcium depletion in frog muscle tubules: The decline of calcium current under maintained depolarization, J.Physiol. 312: 177–207.Google Scholar
  47. 47.
    Schwartz, L. M., McCleskey, E. W., and Almers, W., 1985, Dihydropyridine receptors in muscle are voltage-dependent, but most are not functional calcium channels, Nature 314: 747–751.PubMedCrossRefGoogle Scholar
  48. 48.
    Curtis, B. M., and Catterall, W. A., 1986, Reconstituion of the voltage-sensitive calcium channel purified from skeletal muscle transverse tubules, Biochemistry 25: 3077–3083.PubMedCrossRefGoogle Scholar
  49. 49.
    Affolter, H., and Coronado, R., 1985, Agonists Bay-K8644 and CGP-28392 open channels recon-stituded from skeletal muscle transverse tubules, Biophys. J. 48: 341–347.PubMedCrossRefGoogle Scholar
  50. 50.
    Pelzer, D., Cavalie, A., Flockerzi, V., Hofmann, F., and Trautwein, W., 1987, Two types of Ca channels from skeletal muscle transverse-tubule membranes in lipid bilayers: Differences in conductance properties, gating kinetics, and chemical modulation, Pflüg. Arch. 408(Suppl. 1): R35.Google Scholar
  51. 51.
    Cota, G., and Stefani, E., 1986, A fast-activated inward calcium current in twitch muscle fibers of the frog (Rana montezume), J. Physiol. 370: 151–163.PubMedGoogle Scholar
  52. 52.
    Beam, K. G., Knudson, C. M., and Powell, J. A., 1986, A lethal mutation in mice eliminates the slow calcium current in skeletal muscle cells, Nature 320: 168–170.PubMedCrossRefGoogle Scholar
  53. 53.
    Cognard, C., Lazdunski, M., and Romey, G., 1986, Different types of Ca2+ -channels in mammalian skeletal muscle cells in culture, Proc. Natl. Acad. Sci. USA 83: 517–521.PubMedCrossRefGoogle Scholar
  54. 54.
    Ma, J., and Coronado, R., 1988, Heterogeneity of conductance states in calcium channels of skeletal muscle, Biophys. J. 53: 387–395.PubMedCrossRefGoogle Scholar
  55. 55.
    Smith, J. S., McKenna, E. J., Ma, J., Vilven, J., Vaghy, P. L., Schwartz, A., and Coronado, R., 1987, Calcium-channel activity in a purified dihydropyridine-receptor preparation of skeletal muscle, Biochemistry 26: 7182–7188.PubMedCrossRefGoogle Scholar
  56. 56.
    Noda, M., Ikeda, T., Kayano, T., Suzuki, H., Takeshima, H., Kurasaki, M., Takahashi, H., and Numa, S., 1986, Existence of distinct sodium channel messenger RNAs in rat brain, Nature 320: 188–192.PubMedCrossRefGoogle Scholar
  57. 57.
    Catterall, W. A., Seagar, M. J., and Takahashi, M., 1988, Molecular properties of dihydropyridine-sensitive calcium channels in skeletal muscle, J. Biol. Chem. 263: 535–3538.Google Scholar
  58. 58.
    Home, W. A., Weiland, G. A., and Oswald, R. E., 1986, Solubilization and hydrodynamic characterization of the dihydropyridine receptor from rat ventricular muscle, J. Biol. Chem. 261: 3588–3594.Google Scholar
  59. 59.
    Yatani, A., Codina, J., Imoto, Y., Reeves, J. P., Birnbaumer, L., and Brown, A. M. 1987, A G protein directly regulates mammalian cardiac calcium channels, Science 238: 1288–1292.PubMedCrossRefGoogle Scholar
  60. 60.
    Rios, E., and Brum, G., 1987, Involvement of dihydropyridine receptors in excitation-contraction coupling in skeletal muscle, Nature 325: 717–720.PubMedCrossRefGoogle Scholar
  61. 61.
    Hidalgo, C., Parra, C., Riquelme, G., and Jaimovich, E., 1986, Transverse tubules from frog skeletal muscle: Purification and properties of vesicles sealed with the inside-out orientation, Biochim. Biophys. Acta. 855: 79–88.PubMedCrossRefGoogle Scholar
  62. 62.
    Lau, Y H., Caswell, A. H., and Brunschwig, J. P., 1977, Isolation of transverse tubules by fractionation of triad junctions of skeletal muscle, J. Biol. Chem. 252: 5565–5574.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Jane A. Talvenheimo
    • 1
  • Shu-Rong Wen
    • 1
    • 2
  • Kyung Sook Kim
    • 1
  • Anthony H. Caswell
    • 1
  1. 1.Department of PharmacologyUniversity of Miami School of MedicineMiamiUSA
  2. 2.Department of PharmacologyBeijing Medical UniversityBeijingPeople’s Republic of China

Personalised recommendations