Excitation-Contraction Coupling in Barnacle Muscle Fibers: Does Calcium Entry Trigger Contraction Directly?

  • Mario Luxoro
  • Verónica Nassar-Gentina
  • Eduardo Rojas
Part of the Series of the Centro de Estudios Científicos de Santiago book series (SCEC)


It is well known that mechanical activation of muscle from both vertebrates and invertebrates is triggered by an elevation of the concentration of free-calcium in the sarcoplasm. In skeletal muscle fibers from vertebrates this ion is actively transported into the sarcoplasmic reticulum (SR) and released at the level of the terminal cisternae of the SR following the regenerative depolarization of the transverse tubular membrane.(1)) However, the question of the origin of the calcium required for mechanical activation in invertebrate skeletal muscle has not been yet elucidated. (2)


Single Muscle Fiber Peak Tension Open Fiber Contractile Machinery Vertebrate Skeletal Muscle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ebashi, S., 1976, Excitation-contraction coupling, Ann. Rev. Physiol. 38: 293–313.CrossRefGoogle Scholar
  2. 2.
    Caputo, C., and DiPolo, R., 1980, Does external calcium play any role in contractile activation?, J. Gen. Physiol. 75: 235–237.Google Scholar
  3. 3.
    Atwater, I., Rojas, E., and Vergara, J., 1974, Calcium influxes and tension development in perfused single muscle fibers under membrane potential control, J. Physiol. 243: 523–551.PubMedGoogle Scholar
  4. 4.
    Rojas, E., and Luxoro, M., 1974, Coupling between ion conductance changes and contraction in barnacle muscle fibers under membrane potential control, Actual. Neurophysiol. 10: 159–169.Google Scholar
  5. 5.
    Hidalgo, J., Luxoro, M., and Rojas, E., 1979, On the role of extracellular calcium in triggering contraction in muscle fibers from barnacle under membrane potential control, J. Physiol. 288: 313–330.PubMedGoogle Scholar
  6. 6.
    Bacigalupo, J., Luxoro, M., Rissetti, S., and Vergara, C., 1979, Extracellular space and diffusion barriers in muscle fibers from Megabalanus psittacus (Darwin), J. Physiol. 288: 301–312.PubMedGoogle Scholar
  7. 7.
    Armstrong, C. M., Bezanilla, F. M., and Horowicz, P., 1972, Twitches in the presence of EGTA, Biochim. Biophys. Acta, 267: 605–608.PubMedCrossRefGoogle Scholar
  8. 8.
    Franzini-Armstrong, C., Eastwood, A. B., and Peachey, L. D., 1986, Shape and disposition of clefts, tubules, and sarcoplasmic reticulum in long and short sarcomere fibers of crab and crayfish, Cell Tissue Res. 244(1): 9–19.PubMedCrossRefGoogle Scholar
  9. 9.
    Crowe, L. M., and Baskin, R. J., 1981, Activation of the contractile system in crustacean muscle: Ultrastructural evidence for the role of the T-system, Tissue Cell. 13: 153–164.PubMedCrossRefGoogle Scholar
  10. 10.
    Garcia, A. M., Lennon, A. M., and Hidalgo, C., 1975, Sarcoplasmic reticulum from barnacle muscle: Composition and calcium uptake properties, FEBS Lett. 58: 344–348.PubMedCrossRefGoogle Scholar
  11. 11.
    Rojas, E., Nassar-Gentina, V., Luxoro, M., Pollard, M. E., and Carrasco, M. A., 1987, Inositol 1,4,5-trisphosphate-induced calcium release from the sarcoplasmic reticulum and contraction in crustacean muscle, Can. J. Physiol. Pharmacol. 65: 672–680.PubMedCrossRefGoogle Scholar
  12. 12.
    Keynes, R. D., Rojas, E., Taylor, R. E., and Vergara, J., 1973, Calcium and potassium systems of a giant barnacle muscle fiber under membrane potential control, J. Physiol. 229: 409–455.PubMedGoogle Scholar
  13. 13.
    Fuchs, F., 1971, Ion exchange properties of the calcium receptor site of troponin, Biochim. Biophys. Acta 245: 221–229.PubMedCrossRefGoogle Scholar
  14. 14.
    Luxoro, M., and Nassar-Gentina, V., 1984, Potassium-induced depolarizations and generation of tension in barnacle muscle fibers: Effects of external calcium, strontium, and barium, Quart. J. Exp. Physiol. 69: 235–243.Google Scholar
  15. 15.
    Vergara, J., Tsien, R. Y., and Delay, M., 1985, Inositol 1,4,5-trisphosphate: A possible chemical link in excitation-contraction coupling in muscle, Proc. Natl. Acad. Sci. USA 82: 6352–6356.PubMedCrossRefGoogle Scholar
  16. 16.
    Volpe, P., Salviati, G., Di Virgilio, F. and Pozzan, T., 1985, Inositol 1,4,5-trisphosphate induces calcium release from sarcoplasmic reticulum of skeletal muscle, Nature 310: 347–349.CrossRefGoogle Scholar
  17. 17.
    Nassar, V., Rojas, E., Carrasco, M. A., and Luxoro, M., 1987, Acoplamiento excitacion-contrac-cion en musculo de crustaceo, Arch. Biol. Med. Exp. 20: R154.Google Scholar
  18. 18.
    Downes, C. P., and Michell, R. H., 1981, The polyphosphoinositide phosphodiesterase of erythrocyte membranes, Biochem. J. 198: 133–140.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Mario Luxoro
    • 1
  • Verónica Nassar-Gentina
    • 1
  • Eduardo Rojas
    • 2
  1. 1.Laboratorio de Fisiología Celular, Facultad de Ciencias y Facultad de MedicinaUniversidad de ChileSantiagoChile
  2. 2.Laboratory of Cell Biology and Genetics, National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaUSA

Personalised recommendations