Advertisement

Dynamics of the Release of Calcium by Light and Inositol 1,4,5-Trisphosphate in Limulus Ventral Photoreceptors

  • Richard Payne
Part of the Series of the Centro de Estudios Científicos de Santiago book series (SCEC)

Abstract

Inositol 1,4,5-trisphosphate (IP3) is thought to mediate the release of calcium from endoplasmic reticulum (ER).(1) Cells in many types of tissue have the biochemical machinery required to produce IP3 when an appropriate receptor is activated in the plasma membrane, as well as intracellular stores for calcium that are sensitive to release by IP3.

Keywords

Pressure Injection Calcium Release Calcium Store Inositol Trisphosphate Transient Burst 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berridge, M. J., and Irvine, R. F., 1984, Inositol trisphosphate: a novel second messenger in cellular signal transduction, Nature 312: 315–321.PubMedCrossRefGoogle Scholar
  2. 2.
    Berridge, M. J., 1987, Inositol 1,4,5-trisphosphate and diacylglycerol: two interacting second messengers, Ann. Rev. Biochem. 56: 159–195.PubMedCrossRefGoogle Scholar
  3. 3.
    Meyer, T., Holowka, D., and Stryer, L., 1988, Highly cooperative opening of calcium channels by inositol 1,4,5-trisphosphate, Science 240: 653–656.PubMedCrossRefGoogle Scholar
  4. 4.
    Caiman, B. G., and Chamberlain, S. C., 1982, Distinct lobes of Limulus photoreceptors. II. Structure and ultrastructure, J. Gen. Physiol. 80: 839–862.CrossRefGoogle Scholar
  5. 5.
    Stern, J., Chinn, K., Bacigalupo, J., and Lisman, J. E., 1982, Distinct lobes of Limulus ventral photoreceptors. I. Functional and anatomical properties of lobes revealed by removal of glial cells, J. Gen. Physiol. 80: 825–837.PubMedCrossRefGoogle Scholar
  6. 6.
    Hagins, W. A., Zonana, H. V., and Adams, R. G., 1962, Local membrane current in the outer segments of squid photoreceptors, Nature. (London) 194: 844–847.CrossRefGoogle Scholar
  7. 7.
    Millecchia, R., and Mauro, A,, 1969, The ventral photoreceptor cells of Limulus. III. A voltage-clamp study, J. Gen. Physiol. 54: 331–351.PubMedCrossRefGoogle Scholar
  8. 8.
    Lasansky, A., and Fuortes, M. G. F., 1969, The site of origin of electrical responses in visual cells of the leech Hirudo medicinalis, J. Cell Biol. 42: 241–252.CrossRefGoogle Scholar
  9. 9.
    Payne, R., and Fein, A., 1986, Localization of the photocurrent of Limulus ventral photoreceptors using a vibrating probe, Biophys. J. 50: 193–196.PubMedCrossRefGoogle Scholar
  10. 10.
    Brown, J. E., and Mote, M. I., 1974, Ionic dependence of reversal voltage of the light response in Limulus ventral photoreceptors, J. Gen. Physiol. 63: 337–350.PubMedCrossRefGoogle Scholar
  11. 11.
    Bacigalupo, J., and Lisman, J. E., 1983, Single-channel currents activated by light in Limulus ventral photoreceptors, Nature 304: 268–270.PubMedCrossRefGoogle Scholar
  12. 12.
    Yeandle, S., and Spiegler, J. B., 1973, Light-evoked and spontaneous discrete waves in the ventral eye of Limulus, J. Gen. Physiol. 61: 552–571.CrossRefGoogle Scholar
  13. 13.
    Stieve, H., 1986, Bumps, the elementary excitatory responses of invertebrates, in: The Molecular Mechanism of Photoreception (Stieve, H., ed.), Springer, New York, pp. 199–230.CrossRefGoogle Scholar
  14. 14.
    Wong, F., 1978, Nature of light-induced conductance changes in ventral photoreceptors of Limulus, Nature 276: 76–79.CrossRefGoogle Scholar
  15. 15.
    Lisman, J. E., and Brown, J. E., 1972, The effects of intracellular iontophoretic injection of calcium and sodium ions on the light response of Limulus ventral photoreceptors, J. Gen. Physiol. 59: 701–719.PubMedCrossRefGoogle Scholar
  16. 16.
    Fein, A., and Charlton, J. S., 1977, A quantitative comparison of the effects of intracellular Ca injection and light adaptation on the photoresponse of Limulus ventral photoreceptors, J. Gen. Physiol. 70: 591–600.PubMedCrossRefGoogle Scholar
  17. 17.
    Lisman, J. E., and Brown, J. E., 1975, Effects of intracellular injection of calcium buffers on light adaptation in Limulus ventral photoreceptors, J. Gen. Physiol. 66: 489–506.PubMedCrossRefGoogle Scholar
  18. 18.
    Levy, S., and Fein, A., 1985, Relationship between light sensitivity and intracellular free calcium in Limulus ventral photoreceptors, J. Gen. Physiol. 85: 805–841.PubMedCrossRefGoogle Scholar
  19. 19.
    Payne, R., Corson, D. W., Fein, A., and Berridge, M. J., 1986, Excitation and adaptation of Limulus ventral photoreceptors by inositol 1,4,5-trisphosphate result from a rise in intracellular calcium, J. Gen. Physiol. 88: 127–142.PubMedCrossRefGoogle Scholar
  20. 20.
    Brown, J. E., and Lisman, J. E., 1975, Intracellular calcium modulates the sensitivity and timescale in Limulus ventral photoreceptors, Nature 258: 252–253.PubMedCrossRefGoogle Scholar
  21. 21.
    Brown, J. E., and Blinks, J. R., 1974, Changes in intracellular free calcium during illumination of invertebrate photoreceptors: Detection with aequorin, J. Gen. Physiol. 64: 643–665.PubMedCrossRefGoogle Scholar
  22. 22.
    Brown, J. E., Brown, P. K., and Pinto, L. H., 1977, Detection of light-induced changes of intracellular ionized calcium concentration in Limulus ventral photoreceptors using Arsenazo III, J. Physiol. Lond. 267: 299–320.PubMedGoogle Scholar
  23. 23.
    Nagy, K., and Stieve, H., 1983, Changes in intracellular calcium ion concentration in the course of dark adaptation measured by arsenazo III in the Limulus photoreceptor, Biophys. Struct. Mech. 9: 207–223.CrossRefGoogle Scholar
  24. 24.
    Payne, R., and Fein, A., 1987, Inositol 1,4,5-trisphosphate releases calcium from specialized sites within Limulus photoreceptors, J. Cell. Biol. 104: 933–937.PubMedCrossRefGoogle Scholar
  25. 25.
    Bolsover, S. R., and Brown, J. E., 1985, Calcium, an intracellular messenger of light adaptation also participates in excitation of Limulus ventral photoreceptors, J. Physiol. Lond. 364: 381–393.PubMedGoogle Scholar
  26. 26.
    Clark, A. W., Millecchia, R., and Mauro, A., 1969, The ventral photoreceptors of Limulus. I. The microanatomy, J. Gen. Physiol. 54: 289–309.PubMedCrossRefGoogle Scholar
  27. 27.
    Lisman, J. E., and Strong, J. A., 1979, The initiation of excitation and light adaptation in Limulus ventral photoreceptors, J. Gen. Physiol. 73: 219–243.PubMedCrossRefGoogle Scholar
  28. 28.
    Walz, B., and Fein, A., 1983, Evidence for calcium-sequestering smooth ER in Limulus ventral photoreceptors, Inv. Opthal. Vis. Sci. Suppl. 24: 281.Google Scholar
  29. 29.
    Payne, R., Walz, B., Levy, S., and Fein, A., 1988, The localization of calcium release by inositol trisphosphate in Limulus photoreceptors and its control by negative feedback, Phil. Trans. Roy. Soc. Lond. B 320: 359–379.CrossRefGoogle Scholar
  30. 30.
    Walz, B., 1982, Ca2+ -sequestering smooth endoplasmic reticulum in an invertebrate photoreceptor. I. Intracellular topography as revealed by OsFeCN staining and in situ Ca accumulation, J. Cell. Biol. 93: 839–848.PubMedCrossRefGoogle Scholar
  31. 31.
    Brown, J. E., Rubin, L. J., Ghalayini, A. J., Tarver, A. L., Irvine, R. F., Berridge, M. J., and Anderson, R. E., 1984, Myo-inositol polyphosphate may be a messenger for visual excitation in Limulus photoreceptors, Nature 311: 160–162.PubMedCrossRefGoogle Scholar
  32. 32.
    Fein, A., Payne, R., Corson, D. W., Berridge, M. J., and Irvine, R. F., 1984, Photoreceptor excitation and adaptation by inositol 1,4,5-trisphosphate, Nature 311: 157–160.PubMedCrossRefGoogle Scholar
  33. 33.
    Brown, J. E., and Rubin, L. J., 1984, A direct demonstration that inositol trisphosphate induces an increase in intracellular calcium in Limulus photoreceptors, Biochem. Biophys. Res. Comm. 125: 1137–1142.PubMedCrossRefGoogle Scholar
  34. 34.
    Rubin, L. J., and Brown, J. E., 1985, Intracellular injection of calcium buffers blocks IP3-induced but not light-induced electrical responses of Limulus ventral photoreceptors, Biophys. J. 47: 38a.Google Scholar
  35. 35.
    Fein, A., 1986, Blockade of visual excitation and adaptation in Limulus photoreceptors by GDP-βS, Science 232: 1543–1545.PubMedCrossRefGoogle Scholar
  36. 36.
    Szuts, E. Z., Wood, S. F., Reid, M. A., and Fein, A., 1986, Light stimulates the rapid formation of inositol trisphosphate in squid retinae, Biochem. J. 240: 929–932.PubMedGoogle Scholar
  37. 37.
    Brown, J. E., Watkins, D. C., and Malbon, C. C., 1987, Light-induced changes of inositol phosphates in squid Loligo pealei retina, Biochem. J. 241: 293–297.Google Scholar
  38. 38.
    Wood, S. F., Szuts, E. Z., and Fein, A., 1987, Light-induced changes in inositol trisphosphate in distal segments of squid photoreceptors, Invest. Ophthal. Vis. Sci. 28: 96.Google Scholar
  39. 39.
    Baer, K. M., and Saibil, H. R., 1987, Light- and GTP-activated hydrolysis of phos-phatidylinositolbisphosphate in squid photoreceptor membranes, J. Biol. Chem. 263: 17–20.Google Scholar
  40. 40.
    Devary, O., Heichal, O., Blumenfeld, A., Cassei, A., Suss, A., Barash, A., Rubinstein, T., Minke, B., and Selinger, Z., 1987, Coupling of photoexcited rhodopsin to phosphoinositide hydrolysis in fly photoreceptors, Proc. Natl. Acad. Sci. 84: 6939–6943.PubMedCrossRefGoogle Scholar
  41. 41.
    Vandenberg, C. A., and Montai, M., 1984, Light-regulated biochemical events in invertebrate photoreceptors. 2. Light-regulated phosphorylation of rhodopsin and phosphoinositides in squid photoreceptor membranes, Biochemistry 23: 2347–2352.PubMedCrossRefGoogle Scholar
  42. 42.
    Yoshioka, T., Takagi, M., Hayashi, F., and Amakawa, T., 1983, The effect of isobutylmethyl-xanthine on the photoresponse and phsophorylation of phosphatidylinositol in squid photoreceptor membranes, Biochim. Biophys. Acta 755: 50–55.PubMedCrossRefGoogle Scholar
  43. 43.
    Wood, S. F., Szuts, E. Z., and Fein, A., 1987, Aluminium fluoride and GTP increase inositol phosphate production in distal segments of squid photoreceptors, Biol. Bull. 173: 448–449.Google Scholar
  44. 44.
    Cockcroft, S., 1987, Polyphosphoinositide PDE; Regulation by a novel guanine nucleotide binding protein—G p , Trends. Biochem. 12: 75–79.CrossRefGoogle Scholar
  45. 45.
    Dawson, A. P., and Irvine, R. F., 1984, Inositol 1,4,5 trisphosphate-promoted calcium release from a microsomal fraction of rat liver, Biochem. Biophys. Res. Comm. 120: 858–864.PubMedCrossRefGoogle Scholar
  46. 46.
    Taylor, C. W., and Putney, J. W., Jr., 1985, Size of the inositol 1,4,5 trisphosphate-sensitive calcium pool in guinea pig hepatocytes, Biochem. J. 232: 435–438.PubMedGoogle Scholar
  47. 47.
    Biden, T. J., Wollheim, C. B., and Schlegel, W., 1986, Inositol 1,4,5 trisphosphate and intracellular calcium homeostasis in clonal pituitary cells (GH3), J. Biol. Chem. 261: 7223–7229.PubMedGoogle Scholar
  48. 48.
    Martinez, J. M., II, and Srebro, S., 1976, Calcium and the control of discrete-wave latency in the ventral photoreceptor of Limulus, J. Physiol. 261: 535–562.Google Scholar
  49. 49.
    Payne, R., Corson, D. W., and Fein, A., 1986, Pressure injection of calcium both excites and adapts Limulus ventral photoreceptors, J. Gen. Physiol. 88: 107–126.PubMedCrossRefGoogle Scholar
  50. 50.
    Corson, D. W., and Fein, A., 1987, Inositol 1,4,5-trisphosphate induces bursts of calcium release inside Limulus ventral photoreceptors, Brain Res. 423: 343–346.PubMedCrossRefGoogle Scholar
  51. 51.
    Parker, I., and Miledi, R., 1986, Changes in intracellular calcium and in membrane currents evoked by injection of inositol trisphosphate into Xenopus oocytes, Proc. Roy. Soc. B 228: 307–315.CrossRefGoogle Scholar
  52. 52.
    Ferguson, J. E., Han, J.-K., and Nuccitelli, R., 1987, The effects of inositol phosphate isomers on Cl- conductance in Xenopus laevis oocytes, J. Cell. Biol. 105: 3a.Google Scholar
  53. 53.
    Capoid, T., Field, A. C., Ogden, D. C., and Sandford, C. A., 1987, Internal perfusion of guinea pig hepatocytes with buffered Ca2+ or inositol trisphosphate mimics noradrenaline activation of K+ and Cl- conductances, FEBS. Lett. 217: 247–252.CrossRefGoogle Scholar
  54. 54.
    Woods, N. M., Cuthbertson, K. S. R., and Cobboid, P. H., 1986, Repetitive transient rises in cytoplasmic free calcium in hormone-stimulated hepatocytes, Nature 319: 600–602.PubMedCrossRefGoogle Scholar
  55. 55.
    Suematsu, E., Hirata, M., Hashimoto, T., and Kuriyama, H., 1984, Inositol 1,4,5 trisphosphate releases calcium from intracellular store sites in skinned single cells of porcine artery, Biochem. Biophys. Res. Comm. 120: 481–485.PubMedCrossRefGoogle Scholar
  56. 56.
    Chueh, S. H., and Gill, D. L., 1986, Inositol 1,4,5 trisphosphate and guanine nucleotides activate calcium release from endoplasmic reticulum via distinct mechanisms, J. Biol. Chem. 261: 13883–13886.PubMedGoogle Scholar
  57. 57.
    Thierry, J., and Klee, C. B., 1986, Calcium modulation of inositol 1,4,5 trisphosphate-induced calcium release from neuroblastoma x glioma hybrid NG108–15 microsomes, J. Biol. Chem. 261: 16414–16420.Google Scholar
  58. 58.
    Worley, P. F., Baraban, J. M., Supattapone, S., Wilson, V. S., and Snyder, S. H., 1987, Characterization of inositol trisphosphate receptor binding in brain, J. Biol. Chem. 262: 12132–12136.PubMedGoogle Scholar
  59. 59.
    Rapp, P. E., and Berridge, M. J., 1977, Oscillations in calcium-cAMP control loops form basis of pacemaker activity and other high-frequency biological rhythms, J. Theor. Biol. 66: 497–525.PubMedCrossRefGoogle Scholar
  60. 60.
    Monod, J., Wyman, J., and Changeux, J. P., 1965, On the nature of allosteric transitions: A plausible model, J. Mol. Biol 12: 88–118.PubMedCrossRefGoogle Scholar
  61. 61.
    Supattopone, S., Worley, P. F., Baraban, J. M., and Snyder, S. H., 1988, Solubilization, purification, and characterization of an inositol trisphosphate receptor, J. Biol. Chem. 263: 1530–1534.Google Scholar
  62. 62.
    Saibil, H. R., 1984, A light-stimulated increase in cyclic GMP in squid photoreceptors, FEBS Lett. 168: 213–216.PubMedCrossRefGoogle Scholar
  63. 63.
    Johnson, E. C., Robinson, P. R., and Lisman, J. E., 1986, cGMP is involved in the excitation of invertebrate photoreceptors, Nature 324: 468–470.Google Scholar
  64. 64.
    Payne, R., 1986, Phototransduction by the microvillar photoreceptors of invertebrates: Mediation of a visual cascade by inositol trisphosphate, Photobiochem. Photobiophys. 13: 373–397.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Richard Payne
    • 1
  1. 1.Department of ZoologyUniversity of MarylandCollege ParkUSA

Personalised recommendations