Coexistence of Different Types of Sodium Channels in Striated Muscle and Nerve

  • Richard E. Weiss
Part of the Series of the Centro de Estudios Científicos de Santiago book series (SCEC)


The multiplicity of sodium channels found in excitable tissues has been represented most commonly as differences in binding affinities of the channels for certain highly specific neurotoxins, notably tetrodotoxin (TTX), saxitoxin (STX), and their respective derivatives. The discovery of functional differences between channel types is more recent and there are still relatively few well-described cases. Examples of functional differences between sodium channels may be categorized as follows: (i) differences between sodium channels in different tissues, for example, innervated muscle and nerve versus heart muscle; (ii) differences between distinct populations of sodium channels in the same cell membrane, and (iii) different open states of a single sodium channel type that interconverts.


Sodium Channel Sodium Current Test Voltage Mammalian Skeletal Muscle Frog Skeletal Muscle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dudel, J., Peper, K., Rudel, R., and Trautwein, W., 1967, The effect of tetrodotoxin on the membrane current in cardiac muscle (Purkinje fibers), Pflüg. Arch. 295: 213–226.CrossRefGoogle Scholar
  2. 2.
    Carmeliet, E., and Vereecke, J., 1969, Adrenaline and the plateau phase of the cardiac action potential, Pflüg. Arch. 313: 300–315.CrossRefGoogle Scholar
  3. 3.
    Harris, J. B., and Thesleff, S., 1971, Studies on tetrodotoxin-resistant action potentials in dener-vated skeletal muscle, Acta Physiol. Scand. 83: 382–388.PubMedCrossRefGoogle Scholar
  4. 4.
    Redfern, P., and Thesleff, S., 1971, Action potential generation in denervated skeletal muscle. II. The action of tetrodotoxin, Act. Physiol. Scand. 82: 70–78.CrossRefGoogle Scholar
  5. 5.
    Harris, J. B., and Marshall, M., 1973, Tetrodotoxin-resistant action potentials in newborn rat muscle, Nature New Biol. 243: 191–192.PubMedCrossRefGoogle Scholar
  6. 6.
    Pappone, P. A., 1980, Voltage-clamp experiments in normal and denervated mammalian skeletal muscle fibers, J. Physiol. 306: 377–410.PubMedGoogle Scholar
  7. 7.
    Bean, B. P., Cohen, C. J., and Tsien, R. W., 1982, Block of cardiac sodium channels by tetrodotox-in and lidocaine: Sodium current and Vmax experiments, in: Normal and Abnormal Conduction in the Heart (A. Paes de Carvalho, B. F. Hoffman, and M. Lieberman, Eds.) Futura, Mt. Kisco, N.Y., pp. 189–206.Google Scholar
  8. 8.
    Gonoi, T., Sherman, S. J., and Catterall, W. A., 1985, Voltage clamp analysis of tetrodotoxin-sensitive and -insensitive sodium channels in rat muscle cells developing in vitro, J. Neurosci. 5: 2559–2564.Google Scholar
  9. 9.
    Weiss, R. E., and Horn, R., 1986, Functional differences between two classes of sodium channels in developing rat skeletal muscle, Science 233: 361–364.PubMedCrossRefGoogle Scholar
  10. 10.
    Weiss, R. E., and Horn, R., 1986, Single-channel studies of TTX-sensitive and TTX-resistant sodium channels in developing rat muscle reveal different open-channel properties, Ann. N.Y. Acad. Sci. 479: 152–161.PubMedCrossRefGoogle Scholar
  11. 11.
    Gilly, W. F., and Armstrong, C. M., 1984, Threshold channels: A novel type of sodium channel in squid giant axon, Nature 309: 448–450.PubMedCrossRefGoogle Scholar
  12. 12.
    Kojima, H., Yawo, H., and Kuno, M., 1985, A low-voltage-activated Na channel in the cockroach giant axon, J. Physiol. Soc. Japan. 47: 25a.Google Scholar
  13. 13.
    Llinas, R., and Sugimori, M., 1980, Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices, J. Physiol. 305: 197–213.PubMedGoogle Scholar
  14. 14.
    French, C. R., and Gage, P. W., 1985, A threshold sodium channel in pyramidal cells in rat hippocampus, Neurosci. Lett. 56: 289–294.PubMedCrossRefGoogle Scholar
  15. 15.
    Goldman, L., and Hahin, R., 1978, Initial conditions and the kinetics of the sodium conductance in Myxicola giant axons, J. Gen. Physiol. 72: 879–898.PubMedCrossRefGoogle Scholar
  16. 16.
    Nagy, K., Kiss, T., and Hof, D., 1983, Single Na channels in mouse neuroblastoma cell membrane, Pflüg. Arch. 399: 302–308.CrossRefGoogle Scholar
  17. 17.
    Campbell, D. T., and Hille, B., 1976, Kinetic and pharmacological properties of the sodium channel of frog skeletal muscle, J. Gen. Physiol. 67: 309–323.PubMedCrossRefGoogle Scholar
  18. 18.
    Adrian, R. H., and Marshall, M. W., 1977, Sodium currents in mammalian muscle, J. Physiol. 268: 223–250.PubMedGoogle Scholar
  19. 19.
    Caille, J., Ildefonse, M., and Rougier, O., 1978, Existence of a sodium current in the tubular membrane of frog twitch muscle fiber: Its possible role in the activation of contraction, Pflüg. Arch. 374: 167–177.CrossRefGoogle Scholar
  20. 20.
    Hille, B., and Campbell, D. T., 1976, An improved vaseline gap voltage clamp for skeletal muscle fibers, J. Gen. Physiol. 67: 265–293.PubMedCrossRefGoogle Scholar
  21. 21.
    Heiny, J. A., and Vergara, J., 1982, Optical signals from surface and T-system membranes in skeletal muscle fibers, J. Gen. Physiol. 80: 203–230.PubMedCrossRefGoogle Scholar
  22. 22.
    Furman, R. E., Tanaka, J. C., Mueller, P., and Barchi, R. L., 1986, Voltage-dependent activation in purified reconstituted sodium channels from rabbit T-tubular membranes, Proc. Natl. Acad. Sci. USA 83: 488–492.PubMedCrossRefGoogle Scholar
  23. 23.
    Almers, W., and Levinson, S. R., 1975, Tetrodotoxin binding to normal and depolarized frog muscle and the conductance of a single sodium channel, J. Physiol. 247: 483–509.PubMedGoogle Scholar
  24. 24.
    Catterall, W. A., 1979, Binding of scorpion toxin to receptor sites associated with sodium channels in frog muscle, J. Gen. Physiol. 74: 375–391.PubMedCrossRefGoogle Scholar
  25. 25.
    Jaimovich, E., Chicheporte, R., Lombet, A., Lazdunski, M., Ildefonse, M., and Rougier, O., 1983, Differences in the properties of Na+ channels in muscle surface and T-tubular membranes revealed by tetrodotoxin derivatives, Pflüg. Arch. 397: 1–5.CrossRefGoogle Scholar
  26. 26.
    Barhanin, J., Ildefonse, M., Rougier, O., Sampaio, S. V, Giglio, J. R., and Lazdunski, M., 1984, Tityus 7-toxin, a high-affinity effector of the Na+ channel in muscle, with a selectivity for channels in the surface membrane. Pflüg. Arch. 400: 22–27.CrossRefGoogle Scholar
  27. 27.
    Attwell, K., Cohen, I., Eisner, D., Ohba, M., and Ojeda, C., 1979, The steady-state TTX-sensitive (“window”) sodium current in cardiac Purkinje fibers, Pflüg. Arch. 379: 137–142.CrossRefGoogle Scholar
  28. 28.
    Colatsky, T. J., 1980, Voltage clamp measurement of sodium channel properties in rabbit cardiac Purkinje fibers, J. Physiol. 305: 215–234.PubMedGoogle Scholar
  29. 29.
    Patlak, J. B., and Ortiz, M., 1985, Slow currents through single sodium channels of the adult rat heart, J. Gen. Physiol. 86: 89–104.PubMedCrossRefGoogle Scholar
  30. 30.
    Chiu, S. Y., 1977, Inactivation of sodium channels: Second-order kinetics in myelinated nerve, J. Physiol. 273: 573–596.PubMedGoogle Scholar
  31. 31.
    Cachelin, A. B., DePeyer, J. E., Kokubun, S., and Reuter, H., 1983, Sodium channels in cultured cardiac cells, J. Physiol. 340: 389–401.PubMedGoogle Scholar
  32. 32.
    Kunze, D. L., Lacerda, A. E., Wilson, D. L., and Brown, A. M., 1985, Cardiac Na currents and the inactivating, reopening, and waiting properties of single cardiac Na channels, J. Gen. Physiol. 86: 691–719.PubMedCrossRefGoogle Scholar
  33. 33.
    Scanley, B. E., and Fozzard, H. A., 1987, Low-conductance sodium channels in canine cardiac Purkinje cells, Biophys. J. 52: 489–495.PubMedCrossRefGoogle Scholar
  34. 34.
    Moczydlowski, E., Uehara, A., Guo, X., and Heiny, J., 1986, Isochannels and blocking modes of voltage-dependent sodium channels, Ann. N.Y. Acad. Sci. 479: 269–292.PubMedCrossRefGoogle Scholar
  35. 35.
    Matteson, D. R., and Armstrong, C. M., 1982, Evidence for a population of sleepy sodium channels in squid axon at low temperature, J. Gen. Physiol. 79: 739–758.PubMedCrossRefGoogle Scholar
  36. 36.
    Noda, M., Shimizu, S., Tanaka, T., Takai, T., Kayano, T., Ikeda, T., Takahashi, H., Nakayama, H., Kanaoka, Y., Minamino, N., Kangawa, K., Matsuo, H., Raftery, M. A., Hirose, T., Inayama, S., Hayashida, H., Miyata, T., and Numa, S., 1984, Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence, Nature 312: 121–127.PubMedCrossRefGoogle Scholar
  37. 37.
    Noda, M., Ikeda, T., Kayano, T., Suzuki, H., Takeshima, H., Kurasaki, M., Tadahashi, H., and Numa, S., 1986, Existence of distinct sodium channel RNAs in rat brain, Nature 320: 189–192.CrossRefGoogle Scholar
  38. 38.
    Kayano, T., Noda, M., Flockerzi, V., Takahashi, H., and Numa, S., 1988, Primary structure of rat brain sodium channel III deduced from the cDNA sequence, FEBS Lett. 228: 187–194.PubMedCrossRefGoogle Scholar
  39. 39.
    Auld, V. J., Goldin, A. L., Krafte, D.S., Marshall, J., Dunn, J. M., Catterall, W. M., Lester, H. A., Davidson, N., and Dunn, R. J., 1988, A rat brain Na channel α-subunit with novel gating properties, Neuron 1: 449–461.PubMedCrossRefGoogle Scholar
  40. 40.
    Stuhmer, W., Methfessel, C., Sakmann, B., Noda, M., and Numa, S., 1987, Patch-clamp characterization of sodium channels expressed from rat brain cDNA, Eur. Biophys. J. 14: 131–138.PubMedCrossRefGoogle Scholar
  41. 41.
    DeCino, P., and Kidokoro, Y, 1985, Development and subsequent neural tube effects on the excitability of cultured Xenopus myocytes, J. Neurosci. 5: 1471–1482.PubMedGoogle Scholar
  42. 42.
    Kidoro, Y, 1973, Development of action potentials in a clonal rat skeletal muscle cell line, Nature New Biol. 241: 158–159.CrossRefGoogle Scholar
  43. 43.
    Frelin, C., Vigne, P., and Lazdunski, M., 1983, Na+ channels with high- and low-affinity tetrodotoxin-binding sites in the mammalian skeletal muscle: Difference in functional properties and sequential appearance during rat skeletal myogenesis, J. Biol. Chem. 258: 7256–7259.PubMedGoogle Scholar
  44. 44.
    Frelin, C., Vijverberg, H. P. M., Romey, G., Vigne, P., and Lazdunski, M., 1984, Different functional states of tetrodotoxin-sensitive and tetrodotoxin-resistant Na+ channels occur during the in vitro development of rat skeletal muscle, Pflüg. Arch. 402: 121–128.CrossRefGoogle Scholar
  45. 45.
    Sherman, S. J., Lawrence, J. C., Messner, D. J., Jacoby, K., and Catterall, W. A., 1983, Tetrodotoxin-sensitive sodium channels in rat muscle cells developing in vitro, J. Biol. Chem. 258: 2488–2495.Google Scholar
  46. 46.
    Strichartz, G., Bar-Sagi, D., and Prives, J., 1983, Differential expression of sodium channel activities during the development of chick skeletal muscle cells in culture, J. Gen. Physiol. 82: 365–384.PubMedCrossRefGoogle Scholar
  47. 47.
    Haimovich, B., Tanaka, J. C., and Barchi, R. L., 1986, Developmental appearance of sodium channel subtypes in rat skeletal muscle cultures, J. Neurochem. 41: 1148–1153.Google Scholar
  48. 48.
    Sherman, S. J., and Catterall, W. A., 1982, Biphasic regulation of development of the high-affinity saxitoxin receptor by innervation in rat skeletal muscle, J. Gen. Physiol. 80: 753–768.PubMedCrossRefGoogle Scholar
  49. 49.
    Purves, D., and Sakmann, B., 1974, Membrane properties underlying spontaneous activity of denervated muscle fibers, J. Physiol. 239: 125–153.PubMedGoogle Scholar
  50. 50.
    Stuhmer, W., Roberts, W. M., and Almers, W., 1983, The loose patch clamp, in: Single-Channel Recording (B. Sakmann and E. Neher, Eds.), Plenum, New York, pp. 123–132.Google Scholar
  51. 51.
    Weiss, R. E., 1988, Macroscopic Na+ currents in intact ventricular heart muscle measured with the loose patch voltage clamp method, Biophys. J. 53: 423a.Google Scholar
  52. 52.
    Johnson, E. A., and Lieberman, M., 1971, Heart: Excitation and contraction, Rev. Physiol. 33: 479–532.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Richard E. Weiss
    • 1
  1. 1.Department of Pediatrics, Division of CardiologyUniversity of California-Los AngelesLos AngelesUSA

Personalised recommendations