Skip to main content

Mechanisms of Frequency Tuning in the Internal Ear

  • Chapter
  • 75 Accesses

Abstract

Much of the research work in the internal ear during the last 20 years has been concerned with the mechanisms involved in signal transduction and frequency tuning. It has long been known that the peripheral auditory system operates separating complex stimuli into its component frequencies, and that in this process it not only analyzes the stimulus into components but it also amplifies those frequency components, thus improving its capacity to transduce low-level stimuli. There is recent evidence showing that, in the internal ear, frequency tuning and signal transduction are intimately related processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Davis, H., 1961, Peripheral coding of auditory information, in: Sensory Communication (W. A. Rosenblith, Ed.), M.I.T. Press, Cambridge, MA, pp. 119–141.

    Google Scholar 

  2. Békésy, G. von, 1960, Experiments in Hearing (E. G. Wever, Ed.), McGraw-Hill, New York.

    Google Scholar 

  3. Holton, T., and Hudspeth, A. J., 1986, The transduction channel of hair cells from the bullfrog characterized by noise analysis, J. Physiol. 375: 195–227.

    PubMed  CAS  Google Scholar 

  4. Kiang, N. Y. S., Watanabe, T, Thomas, E. C., and Clark, L., 1965, Discharge Patterns of Single Fibers in the Cat’s Auditory Nerve, MIT Press, Cambridge, MA.

    Google Scholar 

  5. Sellick, P. M., Patuzzi, R., and Johnstone, B. M., 1982, Measurement of basilar membrane motion in the guinea pig using the Mössbauer technique, J. Acoust. Soc. Am. 72: 131–141.

    Article  PubMed  CAS  Google Scholar 

  6. Khanna, S. M., and Leonard, D. G. B., 1982, Basilar membrane tuning in the cat cochlea, Science 215: 305–306.

    Article  PubMed  CAS  Google Scholar 

  7. Robles, L., Ruggero, M. A., and Rich, N. C., 1984, Mössbauer measurements of the basilar membrane tuning curves in the chinchilla, J. Acoust. Soc. Am. (Suppl. 1) 76: 835.

    Article  Google Scholar 

  8. Peake, W. T., and Ling, A., 1980, Basilar membrane motion in the alligator lizard: Its relation to tonotopic organization and frequency selectivity, J. Acoust. Soc. Am. 67: 1736–1745.

    Article  PubMed  CAS  Google Scholar 

  9. Lewis, E. R., Leverenz, E. L., and Kojama, H., 1982, The tonotopic organization of the bullfrog amphibian papilla, an auditory organ lacking a basilar membrane, J. Comp. Physiol. 145: 437–445.

    Article  Google Scholar 

  10. Robles, L., Ruggero, M. A., and Rich, N. C., 1986, Basilar membrane mechanics at the base of the chinchilla cochlea. I. Input-output functions, tuning curves, and response phases, J. Acoust. Soc. Am. 80: 1364–1374.

    Article  PubMed  CAS  Google Scholar 

  11. Rhode, W. S., 1971, Observations of the vibration of the basilar membrane in squirrel monkeys using the Mössbauer technique, J. Acoust. Soc. Am. 49: 1218–1231.

    Article  PubMed  Google Scholar 

  12. Rhode, W. S., and Robles, L., 1974, Evidence from Mössbauer experiments for nonlinear vibration in the cochlea, J. Acoust. Soc. Am. 55: 588–596.

    Article  PubMed  CAS  Google Scholar 

  13. Sellick, P. M., Patuzzi, R., and Johnstone, B. M., 1983, Comparison between the tuning properties of inner hair cells and basilar membrane motion, Hearing Res. 10: 93–100.

    Article  CAS  Google Scholar 

  14. Kim, D. O., Neely, S. T., Molnar, C. E., and Matthews, J. W., 1980, An active cochlear model with negative damping in the partition: Comparison with Rhode’s ante- and postmortem observations, in: Psychophysical, Physiological, and Behavioural Studies in Hearing (G. V. D. Brink and F. A. Bilsen, Eds.), Delft U.P., Delft, pp. 7–14.

    Chapter  Google Scholar 

  15. Neely, S. T., and Kim, D. O., 1983, An active cochlear model showing sharp tuning and high sensitivity, Hearing Res. 9: 123–130.

    Article  CAS  Google Scholar 

  16. de Boer, E., 1983, Power amplification in an active model of the cochlea: Short-wave case, J. Acoust. Soc. Am. 73: 577–579.

    Article  PubMed  Google Scholar 

  17. Kemp D. T., 1978, Stimulated acoustic emissions from within the human auditory system, J. Acoust. Soc. Am. 64: 1386–1391.

    Article  PubMed  CAS  Google Scholar 

  18. Zurek, P. M., 1981, Spontaneous narrowband acoustic signals emitted by human ears, J. Acoust. Soc. Am. 69: 514,523.

    Article  PubMed  CAS  Google Scholar 

  19. Wilson, J. P., and Sutton, G. J., 1981, Acoustic correlates of tonaltinnitus, in: Tinnitus (D. Evered and G. Lawrenson, Eds.), Pitman, London.

    Google Scholar 

  20. Ruggero, M. A., Kramek, B., and Rich, N. C., 1982, Otoacustic emissions in man and dog: Association with cochlear pathology, Soc. Neurosci. Abstr. 8: 43.

    Google Scholar 

  21. Mountain, D. C., 1980, Changes in endolymphatic potential and crossed olivocochlear bundle stimulation alter cochlear mechanics, Science 210: 71–72.

    Article  PubMed  CAS  Google Scholar 

  22. Siegel, J. H., and Kim, D. O., 1982, Efferent neural control of cochlear mechanics? Olivocochlear bundle stimulation affects cochlear biomechanical nonlinearity, Hearing Res. 6: 171–182.

    Article  CAS  Google Scholar 

  23. Brownell, W. E., Bader, C. R., Bertrand, D., and de Ribaupierre, Y., 1985, Evoked mechanical responses of isolated cochlear outer hair cells, Science 227: 194–196.

    Article  PubMed  CAS  Google Scholar 

  24. Zenner, H. P., Zimmerman, U., and Schmitt, U., 1985, Reversible contraction of isolated mammalian cochlear hair cells, Hearing Res. 18: 127–133.

    Article  CAS  Google Scholar 

  25. Ashmore, J. F., 1987, A fast motile response in guinea pig outer hair cells: The cellular basis of the cochlear amplifier, J. Physiol. 388: 323–347.

    PubMed  CAS  Google Scholar 

  26. Crawford, A. C., and Fettiplace, R., 1981, An electrical tuning mechanism in turtle cochlear hair cells, J. Physiol. 312: 377–412.

    PubMed  CAS  Google Scholar 

  27. Crawford, A. C., and Fettiplace, R., 1980, The frequency selectivity of auditory nerve fibres and hair cells in the cochlea of the turtle, J. Physiol. 306: 79–125.

    PubMed  CAS  Google Scholar 

  28. Lewis, R. S., and Hudspeth, A. J., 1983, Voltage- and ion-dependent conductances in solitary vertebrate hair cells, Nature 304: 538–541.

    Article  PubMed  CAS  Google Scholar 

  29. Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J., 1981, Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches, Pflügers. Arch. 391: 85–100.

    Article  PubMed  CAS  Google Scholar 

  30. Hudspeth, A. J., and Lewis, R. S., 1988, Kinetic analysis of voltage- and ion-dependent conductances in saccular hair cells of the bullfrog, Rana catesbeiana, J. Physiol. 400: 237–274.

    CAS  Google Scholar 

  31. Hudspeth, A. J., and Lewis, R. S., 1988, A model for electrical resonance and frequency tuning in saccular hair cells of the bullfrog, Rana catesbeiana, J. Physiol. 400: 275–297.

    CAS  Google Scholar 

  32. Roberts, W. M., Robles, L., and Hudspeth, A. J., 1986, Correlation between the kinetic properties of ionic channels and the frequency of membrane-potential resonance in hair cells of the bullfrog, in: Auditory Frequency Selectivity (B. C. J. Moore and R. D. Patterson, Eds.), Plenum, New York, pp. 89–95.

    Google Scholar 

  33. Art, J. J., Crawford, A. C., and Fettiplace, R., 1986, Electrical resonance and membrane currents in turtle cochlear hair cells, Hearing Res. 22: 31–36.

    Article  CAS  Google Scholar 

  34. Pitchford, S., and Ashmore, J. F., 1987, An electrical resonance in hair cells of the amphibian papilla of the frog Rana temporaria, Hearing Res. 27: 75–83.

    Article  CAS  Google Scholar 

  35. Fuchs, P. A., and Mann, A. C., 1986, Voltage oscillations and ionic currents in hair cells isolated from the apex of the chick’s cochlea, J. Physiol. 371: 31P.

    Google Scholar 

  36. Mulroy, M. J., 1974, Cochlear anatomy of the alligator lizard, Brain Behav. Evol. 10: 69–87.

    Article  PubMed  CAS  Google Scholar 

  37. Holton, T., and Hudspeth, A. J., 1983, A micromechanical contribution to cochlear tuning and tonotopic organization, Science 222: 508–510.

    Article  PubMed  CAS  Google Scholar 

  38. Frishkopf, L. S., and DeRosier, D. J., 1983, Mechanical tuning of free-standing stereociliary bundles and frequency analysis in the alligator lizard cochlea, Hearing Res. 12: 393–404.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Robles, L. (1990). Mechanisms of Frequency Tuning in the Internal Ear. In: Hidalgo, C., Bacigalupo, J., Jaimovich, E., Vergara, J. (eds) Transduction in Biological Systems. Series of the Centro de Estudios Científicos de Santiago. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5736-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5736-0_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5738-4

  • Online ISBN: 978-1-4684-5736-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics