Mechanisms of Frequency Tuning in the Internal Ear

  • Luis Robles
Part of the Series of the Centro de Estudios Científicos de Santiago book series (SCEC)


Much of the research work in the internal ear during the last 20 years has been concerned with the mechanisms involved in signal transduction and frequency tuning. It has long been known that the peripheral auditory system operates separating complex stimuli into its component frequencies, and that in this process it not only analyzes the stimulus into components but it also amplifies those frequency components, thus improving its capacity to transduce low-level stimuli. There is recent evidence showing that, in the internal ear, frequency tuning and signal transduction are intimately related processes.


Hair Cell Outer Hair Cell Frequency Tuning Basilar Membrane Tuning Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Davis, H., 1961, Peripheral coding of auditory information, in: Sensory Communication (W. A. Rosenblith, Ed.), M.I.T. Press, Cambridge, MA, pp. 119–141.Google Scholar
  2. 2.
    Békésy, G. von, 1960, Experiments in Hearing (E. G. Wever, Ed.), McGraw-Hill, New York.Google Scholar
  3. 3.
    Holton, T., and Hudspeth, A. J., 1986, The transduction channel of hair cells from the bullfrog characterized by noise analysis, J. Physiol. 375: 195–227.PubMedGoogle Scholar
  4. 4.
    Kiang, N. Y. S., Watanabe, T, Thomas, E. C., and Clark, L., 1965, Discharge Patterns of Single Fibers in the Cat’s Auditory Nerve, MIT Press, Cambridge, MA.Google Scholar
  5. 5.
    Sellick, P. M., Patuzzi, R., and Johnstone, B. M., 1982, Measurement of basilar membrane motion in the guinea pig using the Mössbauer technique, J. Acoust. Soc. Am. 72: 131–141.PubMedCrossRefGoogle Scholar
  6. 6.
    Khanna, S. M., and Leonard, D. G. B., 1982, Basilar membrane tuning in the cat cochlea, Science 215: 305–306.PubMedCrossRefGoogle Scholar
  7. 7.
    Robles, L., Ruggero, M. A., and Rich, N. C., 1984, Mössbauer measurements of the basilar membrane tuning curves in the chinchilla, J. Acoust. Soc. Am. (Suppl. 1) 76: 835.CrossRefGoogle Scholar
  8. 8.
    Peake, W. T., and Ling, A., 1980, Basilar membrane motion in the alligator lizard: Its relation to tonotopic organization and frequency selectivity, J. Acoust. Soc. Am. 67: 1736–1745.PubMedCrossRefGoogle Scholar
  9. 9.
    Lewis, E. R., Leverenz, E. L., and Kojama, H., 1982, The tonotopic organization of the bullfrog amphibian papilla, an auditory organ lacking a basilar membrane, J. Comp. Physiol. 145: 437–445.CrossRefGoogle Scholar
  10. 10.
    Robles, L., Ruggero, M. A., and Rich, N. C., 1986, Basilar membrane mechanics at the base of the chinchilla cochlea. I. Input-output functions, tuning curves, and response phases, J. Acoust. Soc. Am. 80: 1364–1374.PubMedCrossRefGoogle Scholar
  11. 11.
    Rhode, W. S., 1971, Observations of the vibration of the basilar membrane in squirrel monkeys using the Mössbauer technique, J. Acoust. Soc. Am. 49: 1218–1231.PubMedCrossRefGoogle Scholar
  12. 12.
    Rhode, W. S., and Robles, L., 1974, Evidence from Mössbauer experiments for nonlinear vibration in the cochlea, J. Acoust. Soc. Am. 55: 588–596.PubMedCrossRefGoogle Scholar
  13. 13.
    Sellick, P. M., Patuzzi, R., and Johnstone, B. M., 1983, Comparison between the tuning properties of inner hair cells and basilar membrane motion, Hearing Res. 10: 93–100.CrossRefGoogle Scholar
  14. 14.
    Kim, D. O., Neely, S. T., Molnar, C. E., and Matthews, J. W., 1980, An active cochlear model with negative damping in the partition: Comparison with Rhode’s ante- and postmortem observations, in: Psychophysical, Physiological, and Behavioural Studies in Hearing (G. V. D. Brink and F. A. Bilsen, Eds.), Delft U.P., Delft, pp. 7–14.CrossRefGoogle Scholar
  15. 15.
    Neely, S. T., and Kim, D. O., 1983, An active cochlear model showing sharp tuning and high sensitivity, Hearing Res. 9: 123–130.CrossRefGoogle Scholar
  16. 16.
    de Boer, E., 1983, Power amplification in an active model of the cochlea: Short-wave case, J. Acoust. Soc. Am. 73: 577–579.PubMedCrossRefGoogle Scholar
  17. 17.
    Kemp D. T., 1978, Stimulated acoustic emissions from within the human auditory system, J. Acoust. Soc. Am. 64: 1386–1391.PubMedCrossRefGoogle Scholar
  18. 18.
    Zurek, P. M., 1981, Spontaneous narrowband acoustic signals emitted by human ears, J. Acoust. Soc. Am. 69: 514,523.PubMedCrossRefGoogle Scholar
  19. 19.
    Wilson, J. P., and Sutton, G. J., 1981, Acoustic correlates of tonaltinnitus, in: Tinnitus (D. Evered and G. Lawrenson, Eds.), Pitman, London.Google Scholar
  20. 20.
    Ruggero, M. A., Kramek, B., and Rich, N. C., 1982, Otoacustic emissions in man and dog: Association with cochlear pathology, Soc. Neurosci. Abstr. 8: 43.Google Scholar
  21. 21.
    Mountain, D. C., 1980, Changes in endolymphatic potential and crossed olivocochlear bundle stimulation alter cochlear mechanics, Science 210: 71–72.PubMedCrossRefGoogle Scholar
  22. 22.
    Siegel, J. H., and Kim, D. O., 1982, Efferent neural control of cochlear mechanics? Olivocochlear bundle stimulation affects cochlear biomechanical nonlinearity, Hearing Res. 6: 171–182.CrossRefGoogle Scholar
  23. 23.
    Brownell, W. E., Bader, C. R., Bertrand, D., and de Ribaupierre, Y., 1985, Evoked mechanical responses of isolated cochlear outer hair cells, Science 227: 194–196.PubMedCrossRefGoogle Scholar
  24. 24.
    Zenner, H. P., Zimmerman, U., and Schmitt, U., 1985, Reversible contraction of isolated mammalian cochlear hair cells, Hearing Res. 18: 127–133.CrossRefGoogle Scholar
  25. 25.
    Ashmore, J. F., 1987, A fast motile response in guinea pig outer hair cells: The cellular basis of the cochlear amplifier, J. Physiol. 388: 323–347.PubMedGoogle Scholar
  26. 26.
    Crawford, A. C., and Fettiplace, R., 1981, An electrical tuning mechanism in turtle cochlear hair cells, J. Physiol. 312: 377–412.PubMedGoogle Scholar
  27. 27.
    Crawford, A. C., and Fettiplace, R., 1980, The frequency selectivity of auditory nerve fibres and hair cells in the cochlea of the turtle, J. Physiol. 306: 79–125.PubMedGoogle Scholar
  28. 28.
    Lewis, R. S., and Hudspeth, A. J., 1983, Voltage- and ion-dependent conductances in solitary vertebrate hair cells, Nature 304: 538–541.PubMedCrossRefGoogle Scholar
  29. 29.
    Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J., 1981, Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches, Pflügers. Arch. 391: 85–100.PubMedCrossRefGoogle Scholar
  30. 30.
    Hudspeth, A. J., and Lewis, R. S., 1988, Kinetic analysis of voltage- and ion-dependent conductances in saccular hair cells of the bullfrog, Rana catesbeiana, J. Physiol. 400: 237–274.Google Scholar
  31. 31.
    Hudspeth, A. J., and Lewis, R. S., 1988, A model for electrical resonance and frequency tuning in saccular hair cells of the bullfrog, Rana catesbeiana, J. Physiol. 400: 275–297.Google Scholar
  32. 32.
    Roberts, W. M., Robles, L., and Hudspeth, A. J., 1986, Correlation between the kinetic properties of ionic channels and the frequency of membrane-potential resonance in hair cells of the bullfrog, in: Auditory Frequency Selectivity (B. C. J. Moore and R. D. Patterson, Eds.), Plenum, New York, pp. 89–95.Google Scholar
  33. 33.
    Art, J. J., Crawford, A. C., and Fettiplace, R., 1986, Electrical resonance and membrane currents in turtle cochlear hair cells, Hearing Res. 22: 31–36.CrossRefGoogle Scholar
  34. 34.
    Pitchford, S., and Ashmore, J. F., 1987, An electrical resonance in hair cells of the amphibian papilla of the frog Rana temporaria, Hearing Res. 27: 75–83.CrossRefGoogle Scholar
  35. 35.
    Fuchs, P. A., and Mann, A. C., 1986, Voltage oscillations and ionic currents in hair cells isolated from the apex of the chick’s cochlea, J. Physiol. 371: 31P.Google Scholar
  36. 36.
    Mulroy, M. J., 1974, Cochlear anatomy of the alligator lizard, Brain Behav. Evol. 10: 69–87.PubMedCrossRefGoogle Scholar
  37. 37.
    Holton, T., and Hudspeth, A. J., 1983, A micromechanical contribution to cochlear tuning and tonotopic organization, Science 222: 508–510.PubMedCrossRefGoogle Scholar
  38. 38.
    Frishkopf, L. S., and DeRosier, D. J., 1983, Mechanical tuning of free-standing stereociliary bundles and frequency analysis in the alligator lizard cochlea, Hearing Res. 12: 393–404.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Luis Robles
    • 1
  1. 1.Departamento de Fisiología y Biofísica, Facultad de MedicinaUniversidad de ChileSantiagoChile

Personalised recommendations