Advertisement

Stimulus-Response Coupling in Mammalian Ciliated Cells: The Role of Ca2+ in Prostaglandin Stimulation

  • Manuel Villalon
  • Pedro Verdugo
Part of the Series of the Centro de Estudios Científicos de Santiago book series (SCEC)

Abstract

Calcium has been thought to play an important role in the control of ciliary movement in a broad variety of ciliated cells. In mammalian ciliated cells Ca2 + depletion can cause reversible ciliary arrest. Also, ciliostimulation produced by prostaglandins in ciliated cells of the oviduct is thought to be coupled by release of intracellular Ca2+. However, direct measurements of fluctuations of intracellular [Ca2+] associated with stimulation of ciliary activity have not been reported.

Keywords

Ciliated Cell Ciliary Activity Ciliary Movement Paramecium Caudatum Chemical Message 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Verdugo, P., Rumery, R. E., and Tarn, P. Y., 1980, Hormonal control of oviductal ciliary activity: Effect of prostaglandins, Fertil. Steril 33: 193–196.PubMedGoogle Scholar
  2. 2.
    Verdugo, P., Johnson, N. T., and Tarn, P. Y., 1980, ß-adrenergic stimulation of respiratory ciliary activity, J. Appl. Physiol. 48: 868–871.PubMedGoogle Scholar
  3. 3.
    Murakami, A., and Machemer, H., 1982, Mechanoreception and signal transmission in the lateral ciliated cells on the gill of Mytilus, J. Comp. Physiol. 145: 351–362.CrossRefGoogle Scholar
  4. 4.
    Villalön, M., and Verdugo, P., 1982, Hormonal regulation of ciliary function in the oviduct: The effect of ß-adrenergic agonists, Cell Motility, Suppl. 1, 59–65.CrossRefGoogle Scholar
  5. 5.
    Sanderson, M. J., and Dirksen, E. R., 1986, Mechanosensitivity of cultured ciliated cells from the mammalian respiratory tract: Implications for the regulation of mucociliary transport, Proc. Natl. Acad. Sci. USA 83: 7302–7306.PubMedCrossRefGoogle Scholar
  6. 6.
    Naitoh, Y., Eckert, R., and Friedman, K., 1972, A regenerative calcium response in Paramecium, J. Exp. Biol. 59:667–681.Google Scholar
  7. 7.
    Brehm, P., Dunlap, K., and Eckert, R., 1978, Calcium-dependent repolarization in Paramecium, J. Physiol. 274: 639–654.PubMedGoogle Scholar
  8. 8.
    Satir, P., Reed, W., and Wolf, D. I., 1976, Ca2 +-dependent arrest of cilia without uncoupling epithelial cells, Nature 263: 520–521.PubMedCrossRefGoogle Scholar
  9. 9.
    Verdugo, P., 1980, Ca2 + -dependent hormonal stimulation of ciliary activity, Nature 283: 764–765.PubMedCrossRefGoogle Scholar
  10. 10.
    Stommel, E. W., 1984, Calcium regenerative potentials in Mytilus edulis gill abfrontal ciliated epithelial cells, J. Comp. Physiol. 155A: 445–456.CrossRefGoogle Scholar
  11. 11.
    Stommel, E. W., 1984, Calcium activation of mussel gill abfrontal cilia, J. Comp. Physiol. 155A: 457–469.CrossRefGoogle Scholar
  12. 12.
    Vorhaus, E. F., and Deyrup, I. J., 1953, The effect of adenosinetriphodphate on the cilia of the faringeal mucosa of the frog, Science 118: 553–554.PubMedCrossRefGoogle Scholar
  13. 13.
    Murakami, A., Machemer, H., and Eckert, R., 1978, Stimulation of ciliary activity by low levels of extracellular adenine nucleotides in amphibian oviduct, Exp. Cell Res. 85: 154–158.CrossRefGoogle Scholar
  14. 14.
    Villalön, M., Hinds, T., and Verdugo, P., 1988, Stimulus-response coupling in mammalian ciliated cells: Intracellular [Ca2 +] transients detected by Fura-2, Biophys. J. 53: 602a.Google Scholar
  15. 15.
    Lee, W. I., and Verdugo, P., 1976, Laser light-scattering spectroscopy: A new application in the study of ciliary activity, Biophys. J. 16: 1115–1119.PubMedCrossRefGoogle Scholar
  16. 16.
    Tsien, R. Y., Rink, T. J., and Poenie, M., 1985, Measurement of cytosolic free Ca2+ in individual small cells using fluorescence microscopy with dual excitation wavelength, Cell Calcium 6: 145–157.PubMedCrossRefGoogle Scholar
  17. 17.
    Grynkiewicz, G., Poenie, M., and Tsien, R. Y, 1985, A new generation of Ca2 + indicators with greatly improved fluorescent properties, J. Biol. Chem. 260: 3440–3450.PubMedGoogle Scholar
  18. 18.
    Naitoh, Y., and Kaneko, H., 1973, Control of ciliary activity by adenosine triphsophate and divalent cations in triton extracted models of Paramecium caudatum, J. Exp. Biol. 58: 657–676.Google Scholar
  19. 19.
    Brehm, P., and Eckert, R., 1978, Calcium entry leads to inactivation of calcium channels in Paramecium, Science 202: 1203–1206.CrossRefGoogle Scholar
  20. 20.
    Verdugo, P., Raess, B. V., and Villalón, M., 1983, The role of calmodulin in the regulation of ciliary movement in epithelial cells, J. Submicrosc. Cytol. 15: 95–97.PubMedGoogle Scholar
  21. 21.
    Rubin, R. P., 1974, Calcium and the Secretory Process, Plenum, New York.Google Scholar
  22. 22.
    Szent-Gyorgyi, A. G., 1976, Comparative survey of the regulatory role of calcium in muscle, in: Calcium in Biological Systems, SEB Symp. (C. J. Duncan, ed.), Cambridge University Press, New York, 30: 335–348.Google Scholar
  23. 23.
    Rasmussen, H., Kojima, I., Kojima, K., Zawalich, W., and Apfeldorf, W., 1984, Calcium as intracellular messenger: Sensitivity modulation, C-kinase pathway, and sustained cellular response, in: Advances in Cyclic Nucleotide and Protein Phosphorylation Research, Vol. 18 (P. Greengard, G. A. Robison, Eds.), Raven Press, New York.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Manuel Villalon
    • 1
  • Pedro Verdugo
    • 1
  1. 1.Center for BioengineeringUniversity of WashingtonSeattleUSA

Personalised recommendations