The Target of Inositol 1,4,5-Trisphosphate in Nonmuscle Cells: Calciosome or Endoplasmic Reticulum?

  • Pompeo Volpe
  • Mariangela Bravin
  • Barbara H. Alderson
  • Daniel P. Lew
  • Jacopo Meldolesi
  • Tullio Pozzan
Part of the Series of the Centro de Estudios Científicos de Santiago book series (SCEC)


The total calcium (Ca2+) content of mammalian cells is of the order of 1 to 3 mmoles/ liter of cell water, that is, it is similar to that of the extracellular milieu. On the other hand, the extracellular free Ca2+ concentration is about 1 mM and four orders of magnitude higher than that of the cytoplasm, which is around 100 nM. Although little information is available on the distribution of total cytoplasmic Ca2+, it is reasonable to assume that total cytoplasmic Ca2+ represents no more than 10 to 20% of cellular Ca2+ content.(1) Thus, the vast majority of the cell Ca2+ must be sequestered within intracellular, membrane-bound compartments (Ca2+ pools).


Sarcoplasmic Reticulum Rough Endoplasmic Reticulum Smooth Endoplasmic Reticulum Inositol Trisphosphate Endoplasmic Reticulum Cisterna 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baker, P. F., 1972, Transport and metabolism of calcium ions in nerve, Progr. Biophys. Mol. Biol. 24: 177–223.CrossRefGoogle Scholar
  2. 2.
    Clemente, F., and Meldolesi, J., 1975, Calcium and pancreatic secretion. I. Subcellular distribution of calcium and magnesium in the exocrine pancreas of the guinea pigs, J. Cell. Biol. 65: 88–102.PubMedCrossRefGoogle Scholar
  3. 3.
    Somlyo, A. P., Bond, M., and Somlyo, A. V., 1985, Calcium content of mitochondria and endoplasmic reticulum in liver frozen rapidly in vivo, Nature 314: 622–625.Google Scholar
  4. 4.
    Lipscombe, D., Madison, D. V., Poenie, M., Reuter, H., Tsien, R. Y., and Tsien, R. W., 1988, Spatial distribution of calcium channels and cytosolic calcium transients in growth cones and cell bodies of sympathetic neurons, Proc. Natl. Acad. Sci. USA 85: 2398–2402.PubMedCrossRefGoogle Scholar
  5. 5.
    Porter, K. R., and Palade, G. E., 1957, Studies on the endoplasmic reticulum. III. Its form and distribution in striated muscle cells, J. Biophys. Biochem. Cytol. 3: 269–298.PubMedCrossRefGoogle Scholar
  6. 6.
    MacLennan, D. H., 1970, Purification and properties of the adenosine triphosphatase from sarcoplasmic reticulum, J. Biol. Chem. 245: 4508–4518.PubMedGoogle Scholar
  7. 7.
    MacLennan, D. H., and Wong, P. T. S., 1971, Isolation of a calcium-sequestering protein from sarcoplasmic reticulum, Proc. Natl. Acad. Sci. USA 68: 1231–1235.PubMedCrossRefGoogle Scholar
  8. 8.
    Jorgensen, A. O., Kalnins, V., and MacLennan, D. H., 1979, Localization of sarcoplasmic reticulum proteins in rat skeletal muscle by immunofluorescence, J. Cell. Biol. 80: 372–384.PubMedCrossRefGoogle Scholar
  9. 9.
    Somlyo, A. V., and Franzini-Armstrong, C., 1985, New views of smooth muscle structure using freezing, deep-etching, and rotatory shadowing, Experimentia 41: 841–856.CrossRefGoogle Scholar
  10. 10.
    Kaser-Glanzmann, R., Jakabova, M., George, J. N., and Luscher, E. F., 1977, Stimulation of calcium uptake in platelet membrane vesicles by adenosine 3′-5′ cyclic monophosphate and protein kinase, Biochim. Biophys. Acta 466: 429–440.PubMedCrossRefGoogle Scholar
  11. 11.
    Streb, H., Bayerdoffer, E., Hasse, W., Irvine, R. F., and Schultz, L, 1984, Effect of inositol 1,4,5-trisphosphate on isolated subcellular fractions of rat pancreas, J. Membrane. Biol. 81: 241–253.CrossRefGoogle Scholar
  12. 12.
    Bond, M., Vadasz, G., Somlyo, A. V., and Somlyo, A. P., 1987, Subcellular calcium and magnesium mobilization in rat liver stimulated in vivo with vasopressin and glucagon, J. Biol. Chem. 262: 15630–15636.PubMedGoogle Scholar
  13. 13.
    Leslie, B. A., Burgess, G. M., and Putney, J. W., 1988, Persistent inhibition by inositol 1,4,5-trisphosphate of oxalate-dependent as calcium accumulation in permeable guinea-pig hepatocytes, Cell Calcium 9: 9–16.PubMedCrossRefGoogle Scholar
  14. 14.
    Volpe, P., Krause, K.-H., Hashimoto, S., Zorzato, F., Pozzan, T., Meldolesi, J., and Lew, D. P., 1988, “Calciosome,” a cytoplasmic organelle: The inositol 1,4,5-trisphosphate-sensitive Ca2+ store of nonmuscle cells? Proc. Natl. Acad. Sci. 85: 1091–1095.PubMedCrossRefGoogle Scholar
  15. 15.
    Berridge, M. J., 1984, Inositol trisphosphate and diacylglycerol as novel second messengers, Biochem. J. 220: 345–360.PubMedGoogle Scholar
  16. 16.
    Berridge, M. J., 1987, Inositol trisphosphate and diacylglycerol: Two interacting second messengers, Ann. Rev. Biochem. 56: 159–193.PubMedCrossRefGoogle Scholar
  17. 17.
    Streb, H., Irvine, R. F., Berridge, M. J., and Schultz, I., 1983, Release of Ca2 + from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol 1,4,5-trisphosphate, Nature 306: 67–69.PubMedCrossRefGoogle Scholar
  18. 18.
    Prentki, M., Biden, T. J., Janijc, D., Irvine, R. F., Berridge, M. J., and Wollheim, C. B., 1984, Rapid mobilization of Ca2+ from rat insulinoma microsomes by inositol 1,4,5-trisphosphate, Nature 309: 562–564.PubMedCrossRefGoogle Scholar
  19. 19.
    Joseph, J. K.r and Williamson, J. R., 1986, Characterization of inositol trisphosphate-mediated Ca2+ release from permeabilized hepatocytes, J. Biol. Chem. 261: 14658–14664.PubMedGoogle Scholar
  20. 20.
    Biden, T. J., Wollheim, C. B., and Schlegel, W., 1986, Inositol 1,4,5-trisphosphate and intracellular Ca24 homeostasis in clonal pituitary (GH3) cells, J. Biol. Chem. 261: 3184–3192.Google Scholar
  21. 21.
    Lew, D. P., Wollheim, C. B., Waldvogel, F. A., and Pozzan, T, 1984, Modulation of cytosolic free Ca2+ transients by changes in intracellular calcium-buffering capacity: Correlation with exocytosis and O2 production in human neutrophils, J. Cell. Biol. 99: 1212–1220.PubMedCrossRefGoogle Scholar
  22. 22.
    Bruzzone, R., Pozzan, T., and Wollheim, C. B., 1986, Caerulein and carbamoylcholine stimulate pancreatic amylase release at resting cytosolic free Ca2+, Biochem. J. 235: 139–143.PubMedGoogle Scholar
  23. 23.
    Krause, K.-H., and Lew, D. P., 1987, Subcellular distribution of Ca2+ pumping sites in human neutrophils, J. Clin. Inv. 80: 107–116.CrossRefGoogle Scholar
  24. 24.
    Guillemette, G., Balla, T., Baukal, A. J., Spat, A., and Catt, K. J., 1987, Intracellular receptors for inositol 1,4,5-trisphosphate in angiotensin II target tissues, J. Biol. Chem. 262: 1010–1015.PubMedGoogle Scholar
  25. 25.
    Guillemette, G., Balla, T., Baukal, A. J., and Catt, K. J., 1988, Characterization of inositol 1,4,5-trisphosphate receptors and calcium mobilization in a hepatic plasma membrane fractions, J. Biol. Chem. 263: 4541–4548.PubMedGoogle Scholar
  26. 26.
    Payne, R., and Fein, A., 1987, Inositol 1,4,5-trisphosphate releases calcium from specialized sites within Limulus photoreceptors, J. Cell. Biol. 104: 933–937.PubMedCrossRefGoogle Scholar
  27. 27.
    Thayer, S. A., Perney, T. M., and Miller, R. J., 1988, Regulation of calcium homeostasis in sensory neurons by bradykinin, J. Neurosci. 8: 4089–4097.PubMedGoogle Scholar
  28. 28.
    Burgess, G. M., Irvine, R. F., Berridge, M. J., McKinney, J. S., and Putney, J. W., 1984, Actions of inositol phosphates on Ca2+ pools in guinea pig hepatocytes, Biochem. J. 224: 141–146.Google Scholar
  29. 29.
    Taylor, C. W., and Putney, J. W., 1985, Size of the inositol 1,4,5-trisphosphate-sensitive calcium pool in guinea pig hepatocytes, Biochem. J. 232: 435–438.PubMedGoogle Scholar
  30. 30.
    Wuitack, F., Raeymakers, L., Verbist, J., Jones, L. R., and Casteels, R., 1987, Smooth-muscle endoplasmic reticulum contains a cardiaclike form of calsequestrin, Biochim. Biophys. Acta 899: 151–158.CrossRefGoogle Scholar
  31. 31.
    Damiani, E., Spamer, C., Heilmann, C., Salvatori, S., and Margreth, A., 1988, Endoplasmic reticulum of rat liver contains two proteins closely related to skeletal muscle sarcoplasmic reticulum Ca-ATPase and calsequestrin, J. Biol. Chem. 263: 340–343.PubMedGoogle Scholar
  32. 32.
    Benson, R. J. J., and Fine, R. E., 1987, Purification of a calsequestrinlike protein from bovine brain, Neuroscience (Abstr.) 473.6.Google Scholar
  33. 33.
    Meldolesi, J., Volpe, P., and Pozzan, T., 1988, The intracellular distribution of calcium, Trends Neurosci. 11: 449–452.PubMedCrossRefGoogle Scholar
  34. 34.
    Oberdorf, J. A., Lebeche, D., Head, J. F., and Kaminer, B., 1987, Identification of a calse-questrinlike protein in sea urchin eggs,J.Cell Biol. 105: 338a.Google Scholar
  35. 35.
    Hashimoto, S., Bruno, B., Volpe, P., Zorzato, F., Pozzan, T., Krause, K.-H., Lew, P. D., and Meldolesi, J., 1988, On the nature and function of the calciosome, a cytoplasmic organelle containing calsequestrinlike protein(s) which is expressed in nonmuscle cells, in: Hormones and Cell Regulation, Vol. 165 (J. Nunez, J. Ormont, and E. Carafoli, eds.), John Libbey Eurotext, London, pp. 167–180.Google Scholar
  36. 36.
    Hashimoto, S., Bruno, B., Lew, D. P., Pozzan, P., Volpe, P., and Meldolesi, J., 1988, Immunocytochemistry of calciosomes in liver and pancreas, J. Cell Biol. 107: 2523–2531.PubMedCrossRefGoogle Scholar
  37. 37.
    Dean, W. L., 1984, Purification and reconstitution of a Ca2+ pump from human platelets, J. Biol. Chem. 259: 7343–7348.PubMedGoogle Scholar
  38. 38.
    Sarkadi, B., Enyedi, A., Penniston, J. T., Verma, A. K., Dux, L., Molner, E., and Gardos, G., 1988, Characterization of membrane calcium pumps by simultaneous immunoblotting and 32P radiography, Biochem. Biophys. Acta 939: 40–46.PubMedCrossRefGoogle Scholar
  39. 39.
    Krause, K.-H., and Campbell, K. P., 1988, Sarcoplasmic reticulum proteins in phagocytes: Immunological and functional properties and subcellular distribution, FASEB J. 2: 542a.Google Scholar
  40. 40.
    Garfinkel, D., 1963, A comparative study of electron transport in microsomes, Comp. Biochem. Physiol 8: 367–379.CrossRefGoogle Scholar
  41. 41.
    De Pierre, J. W., and Dallner, G., 1975, Structural aspects of the membrane of the endoplasmic reticulum, Biochim. Biophys. Acta 415: 411–472.Google Scholar
  42. 42.
    Koch, G., Smith, M., Macer, D., Webster, D., and Mortara, R., 1986, Endoplasmic reticulum contains a common, abundant calcium-binding glycoprotein, endoplasmin, J. Cell. Sci. 86: 217–232.PubMedGoogle Scholar
  43. 43.
    Ezerman, E. B., and Ishikawa, H., 1967, Differentiation of the sarcoplasmic reticulum and T system in developing chick skeletal muscle in vitro, J. Cell. Biol. 35: 405–420.PubMedCrossRefGoogle Scholar
  44. 44.
    Salviati, G., Betto, R., Salvatori, S., and Margreth, A., 1979, Evidence for the presence of the stearyl-CoA desaturase system in the sarcoplasmic reticulum of slow muscle, Biochim. Biophys. Acta 574: 280–289.PubMedGoogle Scholar
  45. 45.
    Henne, V., Piiper, A., and Soling, H.-D., 1987, Inositol 1,4,5-trisphosphate and 5’-GTP induce calcium release from different intracellular pools, FEBS Lett. 218: 153–158.PubMedCrossRefGoogle Scholar
  46. 46.
    Supattapone, S., Worley, P. F., Baraban, J. M., and Snyder, S. H., 1988, Solubilization, purification, and characterization of an inositol trisphosphate receptor, 263: 1530–1534.Google Scholar
  47. 47.
    Adelman, M. R., Sabatini, D. D., and Blobel, G., 1973, Ribosome-membrane interaction: Nondestructive disassembly of rat liver rough microsomes into ribosomal and membraneous components, J. Cell. Biol. 56: 206–229.PubMedCrossRefGoogle Scholar
  48. 48.
    Michalak, M., Campbell, K. P., and MacLennan, D. H., 1980, Localization of the high-affinity calcium-binding protein and an intrinsic glycoprotein in sarcoplasmic reticulum membranes, J. Biol. Chem. 255: 1317–1326.PubMedGoogle Scholar
  49. 49.
    Weber, K., and Osborn, M., 1968, The reliability of molecular weight determinations by dodecyl sulphate Polyacrylamide gel electrophoresis, J. Biol. Chem. 244: 4406–4410.Google Scholar
  50. 50.
    Laemmli, U.K., 1970, Cleavage of structural proteins during the assembly of the head of bacteriophage-T4, Nature 227: 680–685.PubMedCrossRefGoogle Scholar
  51. 51.
    Campbell, K. P., MacLennan, D. H., and Jorgensen, A. D., 1983, Staining of the Ca2+ -binding proteins, calsequestrin, calmodulin, troponin-C, and S-100 with the cationic dye “Stains All,” J. Biol. Chem. 258: 11267–11273.PubMedGoogle Scholar
  52. 52.
    Preissler, M., and Williams, J. A., 1983, Localization of ATP-dependent calcium transport activity in mouse pancreatic microsomes, J. Membr. Biol. 73: 137–143.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Pompeo Volpe
    • 1
  • Mariangela Bravin
    • 2
  • Barbara H. Alderson
    • 1
  • Daniel P. Lew
    • 3
  • Jacopo Meldolesi
    • 4
  • Tullio Pozzan
    • 2
  1. 1.Department of Physiology and BiophysicsThe University of Texas Medical BranchGalvestonUSA
  2. 2.Centro di Studio per la Fisiologia dei Mitocondri del CNRIstituto di Patologia Generale dell’Università di PadovaPaduaItaly
  3. 3.Division des Maladies InfectieusesHôpital Cantonal UniversitaireGeneva 4Switzerland
  4. 4.Dipartimento di Farmacologia dell’ Università di Milano, Centro di Studio, di Cito Farmacologia del CNRIstituto Scientifico San RaffaeleMilanItaly

Personalised recommendations