Signal Transduction and Ion Permeability in Adrenal Glomerulosa Cells

  • Elisa T. Marusic
  • Maria V. Lobo
Part of the Series of the Centro de Estudios Científicos de Santiago book series (SCEC)


In recent years it has become apparent that many types of endocrine cells exhibit electrical activity, an important property with regard to stimulus-secretion coupling. This is also true for adrenal glomerulosa cells; from the early work of Matthews and Saffran,1) it has been known that adrenal cells have a negative resting potential that is influenced by the binding of ACTH to specific receptors. Adrenacorticotropin (ACTH) stimulates aldosterone secretion from adrenal glomerulosa cells. The secretion of this hormone is under the control of at least three stimuli: angiotensin II, external potassium ions, and ACTH. Different transduction mechanisms have been proposed in relation to the effects of these factors and include cAMP formation, regulation of cytosolic free calcium through the phosphatidylinositol system, and ion channel modification, protein kinase C activation, and modification of the membrane potential. This situation is summarized in Fig. 1.


Atrial Natriuretic Peptide Aldosterone Secretion Aldosterone Production Inhibitory Phase Potassium Permeability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mathews, E. K., and Saffran, M., 1973, Ionic dependence of adrenal steroidogenesis and ACTH-induced changes in the membrane potential of adrenocortical cells, J. Physiol. 234: 43–64.Google Scholar
  2. 2.
    Hausdorff, W., Sakura, R., Aguilera, G., and Catt, K., 1987, Control of aldosterone production by angiotensin II is mediated by two guanine nucleotide regulatory proteins, Endocrinology 120: 1608–1627.CrossRefGoogle Scholar
  3. 3.
    Quinn, S., and Williams, G. H., 1988, Regulation of aldosterone secretion, Ann. Rev. Physiol. 50: 409–426.CrossRefGoogle Scholar
  4. 4.
    Foster, R., Lobo M. V., Rasmussen, H., and Marusic, E. T., 1982, The effect of calcium on potassium-induced depolarization of adrenal glomerulosa cells, FEBS Lett. 149: 253–256.PubMedCrossRefGoogle Scholar
  5. 5.
    Rasmussen, H., 1986, The calcium messenger system, N. Engl. J. Med. 314: 1164–1170.PubMedCrossRefGoogle Scholar
  6. 6.
    Kojima, K., Kojima, I., and Rasmussen, H., 1984, Dihydropyridine calcium antagonist and agonist: Effect on aldosterone secretion, Am. J. Physiol. 247: E645-E650.PubMedGoogle Scholar
  7. 7.
    Foster, R., Lobo, M. V., Rasmussen, H., and Marusic, E. T., 1981, Calcium: Its role in the mechanism of action of angiotensin II and potassium in aldosterone production, Endocrinology 109: 2196–2201.PubMedCrossRefGoogle Scholar
  8. 8.
    Elliott, M. E., Siegel, F. L., Hadjokas, N., and Goodfriend, T. L., 1985, Angiotensin effects on calcium and steroidogenesis in adrenal glomerulosa cells, Endocrinology 116: 1051–1059.PubMedCrossRefGoogle Scholar
  9. 9.
    Natke, E., and Kabela, E., 1979, Electrical responses in adrenal cortex: Possible relation to aldosterone secretion, Am. J. Physiol. 237: E158-E162.PubMedGoogle Scholar
  10. 10.
    Lobo, M. V., and Marusic, E. T., 1986, Effect of angiotensin II, ATP, and ionophore A23187 on potassium efflux in adrenal glomerulosa cells, Am. J. Physiol. 250: E125-E130.PubMedGoogle Scholar
  11. 11.
    Marusic, E. T, and Lobo, M. V., 1988, Steroidogenesis and ionic permeability in adrenal glomerulosa cells, Arch. Biol. Med. Exp. 21: 171–176.PubMedGoogle Scholar
  12. 12.
    Lobo, M. V., and Marusic, E. T, 1988, Angiotensin II causes a dual effect on potassium permeability in adrenal glomerulosa cells, Am. J. Physiol. 254: E144-E149.PubMedGoogle Scholar
  13. 13.
    Quinn, S. J., Cornwall, M. C., Williams, G. H., 1987, Electrophysiological responses to angiotensin II of isolated rat adrenal glomerulosa cells, Endocrinology 120: 1581–1589.PubMedCrossRefGoogle Scholar
  14. 14.
    Mattews, E. K., 1986, Calcium and membrane permeability, Br. Med. Bull. 42: 391–398.Google Scholar
  15. 15.
    Apfeldorf, W., Isales, C., and Barrett, P., 1988, Atrial natriuretic peptide inhibits the stimulation of aldosterone secretion but not the transient increase in intracellular free calcium concentration induced by angiotensin II addition, Endocrinology 122: 1460–1465.PubMedCrossRefGoogle Scholar
  16. 16.
    Kojima, I., Kojima, K., and Rasmussen, H., 1985, Role of calcium fluxes in the sustained phase of angiotensin II-mediated aldosterone secretion for adrenal glomerulosa cells, J. Biol. Chem. 260: 9177–9184.PubMedGoogle Scholar
  17. 17.
    Alkon, D. L., Kusata, M., Neary, J., Naito, S., Coulter, D., and Rasmussen, H., 1986, Kinase-C activation prolongs Ca-dependent inactivation of K currents, Biochem. Biophys. Res. Commun. 134: 1245–1253.PubMedCrossRefGoogle Scholar
  18. 18.
    Higashida, H., and Brown, J. A., 1986, Two polyphosphatidylinositide metabolites control two K+ currents in neural cells, Nature 225: 323–333.Google Scholar
  19. 19.
    Cook, D. C., and Hales, N., 1984, Intracellular ATP directly blocks K-channels in pancreatic ß-cells, Nature 311: 271–273.PubMedCrossRefGoogle Scholar
  20. 20.
    Litosh, I., 1987, Regulatory GTP-binding proteins: Emerging concepts on their role in cell function, Life Sciences 41: 251–258.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Elisa T. Marusic
    • 1
  • Maria V. Lobo
    • 1
  1. 1.Departamento de Fisiología y Biofísica, Facultad de MedicinaUniversidad de ChileSantiagoChile

Personalised recommendations