Advertisement

Synexin-Driven Membrane Fusion: Molecular Basis for Exocytosis

  • Eduardo Rojas
  • A. Lee Burns
  • Harvey B. Pollard
Part of the Series of the Centro de Estudios Científicos de Santiago book series (SCEC)

Abstract

Secretion by exocytosis involves fusion of a secretory vesicle membrane with the plasma membrane of the secreting cell. In many endocrine cells, including chromaffin cells and pancreatic β-cells, such simple exocytosis is followed by contact and fusion of more deeply situated secretory vesicles with the initially fused secretory vesicle membranes. The latter process is called compound exocytosis, and presumably allows for additional secretion without moving secretory granules long distances through the cytoskeleton to reach the plasma membrane.

Keywords

Chromaffin Cell Phosphatidic Acid Membrane Fusion Current Transient Adrenal Chromaffin Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Creutz, C. E., Pazoles, C. J., and Pollard, H. B., 1978, Identification and purification of an adrenal medullary protein (synexin) that causes calcium-dependent aggregation of isolated chromaffin granules, Biol. Chem. 253: 2858–2866.Google Scholar
  2. 2.
    Scott, J. H., Keiner, K. L., and Pollard, H. B., 1985, Purification of synexin by pH step elution from chromatofocusing media in the absence of amphols, Anal. Biochem. 149: 163–165.PubMedCrossRefGoogle Scholar
  3. 3.
    Palade, G., 1975, Intracellular aspects of the process of protein synthesis, Science 189: 347–358.PubMedCrossRefGoogle Scholar
  4. 4.
    Morris, S. J., Hughes, J. M. X., and Whittaker, V. P., 1982, Purification and mode of action of synexin: A protein-enhancing calcium-induced membrane aggregation, J. Neurochem. 39: 529–536.PubMedCrossRefGoogle Scholar
  5. 5.
    Simon, S. M., and Llinas, R. R., 1985, Compartmentalization of the submembrane calcium activity during calcium influx and its significance in transmitter release, Biophys. J. 48: 485–489.PubMedCrossRefGoogle Scholar
  6. 6.
    Tsien, R. W., Hess, P., McCleskey, E. W., and Rosenberg, R. L., 1987, Mechanisms of selectivity, permeation, and block, Ann. Rev. Biophys. Biophys. Chem. 16: 265–290.CrossRefGoogle Scholar
  7. 7.
    Creutz, C. E., and Sterner, D. C., 1983, Calcium dependence of the binding of synexin to isolated chromaffin granules, Bioch. Biophys. Res. Commun. 114: 355–364.CrossRefGoogle Scholar
  8. 8.
    Creutz, C. E., 1981, Cw-unsaturated fatty acids induce the fusion of chromaffin granules aggregated by synexin, J. Cell Biol. 91: 247–256.PubMedCrossRefGoogle Scholar
  9. 9.
    Creutz, C. E., and Pollard, H. B., 1982, Development of a cell-free model for compound exocytosis using components of the chromaffin cell, J. Auton. Nerv. Syst. 7: 13–18.CrossRefGoogle Scholar
  10. 10.
    Hotchkiss, A., Pollard, H. B., Scott, J., and Axelrod, J., 1981, Release of arachidonic acid from adrenal chromaffin cell cultures during secretion of epinephrine, Fed. Proc. 40: 256.Google Scholar
  11. 11.
    Frye, R. A., and Holz, R. W., 1984, The relationship between arachidonic acid release and catecholamine secretion from culture bovine adrenal chromaffin cells, J. Neurochem. 43: 146–150.PubMedCrossRefGoogle Scholar
  12. 12.
    Pollard, H. B., Creutz, C. E., Fowler, V. M., Scott, J. H., and Pazoles, C. J., 1982, Calcium-dependent regulation of chromaffin granule movement, membrane contact, and fusion during exocytosis, Cold Spring Harbor Symp. Quant. Biol. 46: 819–834.PubMedCrossRefGoogle Scholar
  13. 13.
    Ornberg, R. L., Duong, L. T., and Pollard, H. B., 1986, Intergranular vesicles: New organelles in the secretory granules of adrenal chromaffin cells, Cell and Tissues Res. 245: 547–553.Google Scholar
  14. 14.
    Hong, K., Duzgunes, N., and Papahadjopoulos, D., 1981, Role of synexin in membrane fusion: Enhancement of calcium-dependent fusion of phospholipid vesicles, J. Biol. Chem. 256: 3641–3644.PubMedGoogle Scholar
  15. 15.
    Hong, K., Duzgunes, N., Ekert, R., and Papahadjopoulos, D., 1982, Synexin facilitates fusion of specific phospholipid vesicles at divalent cation concentrations found intracellularly, Prod. Nat. Acad. Sci. USA 79: 4642–4644.CrossRefGoogle Scholar
  16. 16.
    Hong, K., Ekert, R., Bentz, J., Nir, S., and Papahadjopoulos, D., 1983, Kinetics of synexin-facilitated membrane fusion, Biophys. J. 41: 31a.Google Scholar
  17. 17.
    Stutzin, A., 1986, A fluorescence assay for monitoring and analyzing fusion of biological membranes vesicles in vitro, FEBS Lett. 197: 274–280.PubMedCrossRefGoogle Scholar
  18. 18.
    Stutzin, A., Cabantchik, I., Lelkes, P. I., and Pollard, H. B., 1987, Synexin-mediated fusion of bovine chromaffin granule ghosts: Mechanism of pH dependence, Biophys. Biochem. Acta 905: 205–212.CrossRefGoogle Scholar
  19. 19.
    Nir, S., Stutzin, A., and Pollard, H. B., 1987, Effect of synexin on aggregation and fusion of chromaffin granule ghosts at pH 6, Biochemistry, Biophys. Biochem. Acta 903: 309–318.CrossRefGoogle Scholar
  20. 20.
    Hong, K., Duzgunes, N., and Papahadjopoulos, D., 1982, Modulation membrane fusion by calcium-binding proteins, Biophys. J. 37: 297–306.PubMedCrossRefGoogle Scholar
  21. 21.
    Pollard, H. B., Ornberg, R., Levine, M., Heldman, E., Morita, K., Keiner, K., Lelkes, P., Brocklehurst, K., Forsberg, E., Duong, L., Levine, R., and Youdim, M. B. H., 1985, Hormone packaging and secretion by exocytosis: A view from the chromaffin cell, Vitamins and Hormones (G. Aurbach, ed.), 42: 109–196.PubMedCrossRefGoogle Scholar
  22. 22.
    Scott, H. H., Creutz, C. E., Pollard, H. B., and Ornberg, R. O., 1985, Synexin binds in a calcium-dependent fashion to oriented chromaffin cell plasma membranes, FEBS Lett. 180: 17–23.PubMedCrossRefGoogle Scholar
  23. 23.
    Burns, A. L., Magendzo, K., Shirvan, A., Srivastava, J., Rojas, E., Alijani, M. R., and Pollard, H. B., 1989, Calcium channel activity of purified human synexin and structure of the human synexin gene, Proc. Nat. Acad. Sci. USA 86: 3798–3802.PubMedCrossRefGoogle Scholar
  24. 24.
    Wallner, B. P., Mattaliano, R. J., Hession, C., Cate, R. L., Tizard, R., Sinclair, L. K., Foeller, C., Chow, E. P., Browning, J. L., Ramachandrau, K. L., and Pepinsky, R. B., 1986, Cloning and expression of human lipocortin, a phospholipase A2 inhibitor with potential anti-inflammatory activity, Nature 320: 77–81.PubMedCrossRefGoogle Scholar
  25. 25.
    Schlaepfer, D. D., Mehlman, T., Burgess, W. H., and Haigler, H. T., 1987, Structural and functional characterization of endonexin II, a calcium- and phospholipid-binding protein, Biophys. J. 48: 485–492.Google Scholar
  26. 26.
    Kaplan, R., Jaye, M., Burgess, W. H., Schlaepfer, D. D., and Haigler, H. T., 1988, Cloning and expression of cDNA for endonexin II, a Ca2+ and phospholipid-binding protein, J. Biol. Chem. (in press).Google Scholar
  27. 27.
    Glenney, J. R., 1986, Two related but distinct forms of the M r 36,000 tyrosine kinase substrate (calpactin) that interact with phospholipid and acting in a Ca2+-dependent manner, Proc. Nat. Acad. Sci. USA 83: 4258–4262.PubMedCrossRefGoogle Scholar
  28. 28.
    Huang, K-S., Wallner, B. P., Mattaliano, R. J., Tizard, R., Burne, C., Frey, A., Hession, C., McGray, P., Sinclair, L. K., Chow, E. P., Browning, J. L., Ramachandran, K. L., Tang, J., Smart, J. E., and Pepinsky, R. B., 1986, Two human 35-kD inhibitors of phospholipase are related to substrate of pp60V-src and of the epidermal growth factor receptor kinase, Cell 46: 191–199.PubMedCrossRefGoogle Scholar
  29. 29.
    Kirstensen, T, Saris, C. J. M., Hunter, T, Hicks, L. J., Noonan, D. J., Glenney, J. R., Jr., and Tack, B. F., 1986, Primary structure of bovine calpactin I heavy chain (p36), a major cellular substrate for retroviral protein-tirosine kinases: Homology with the human phospholipase A2 inhibitor lipocortin, Biochem. 25: 4497–4503.CrossRefGoogle Scholar
  30. 30.
    Saris, C. J. M., Tack, B. F., Kristensen, T., Glenney, J. R., Jr., and Hunter, T, 1986, The cDNA sequence for the protein-tyrosine kinase substrate p36 (calpactin I heavy chain) reveals a multi-domain protein with internal repeats, Cell 46: 201–212.PubMedCrossRefGoogle Scholar
  31. 31.
    Weber, K., Johnsson, N., Plessmann, U., Van, P. N., Soling, H-D., Ampe, C., and Vandekerckhove, J., 1987, The amino acid sequence of protein II and its phosphorylation site for protein kinase C: The domain structure (of) Ca2+-modulated lipid-binding proteins, EMBO J. 6: 1599–1604.PubMedGoogle Scholar
  32. 32.
    Sudhof, T. C., Slaughter, C. A., Leznicki, I., Barjon, P., and Reynolds, G. A., 1988, Human 67-kDa calelectrin contains a duplication of four repeats found in 35-kDa lipocortins, Proc. Nat. Acad. Sci. USA 85: 664–668.PubMedCrossRefGoogle Scholar
  33. 33.
    Taylor, W. R., and Geisow, M. J., 1987, Predicted structure for the calcium-dependent membrane-binding proteins p35, p36, and p32, Prot. Engin. 1(3): 183–187.CrossRefGoogle Scholar
  34. 34.
    Rojas, E., and Tobias, J. M., 1965, Membrane model: Association of inorganic cations with phospholipid monolayers, Biochem. Biophys. Acta 94: 394–404.PubMedCrossRefGoogle Scholar
  35. 35.
    Santis, M., and Rojas, E., 1969, On the chemistry of ion exchange in monomolecular layers of lipids, Biochim. Biophys. Acta 193: 319–332.PubMedCrossRefGoogle Scholar
  36. 36.
    Davies, J. T., and Rideal, E. K., 1961, Interfacial phenomena, Academic, New York.Google Scholar
  37. 37.
    Creutz, C. E., Pazoles, C. J., and Pollard, H. B., 1979, Self-association of synexin in the presence of calcium: Correlation with synexin-induced membrane fusion and examination of the structure of synexin aggregates, J. Biol. Chem. 254: 553–558.PubMedGoogle Scholar
  38. 38.
    Rojas, E., and Pollard, H. B., 1987, Membrane capacity measurements suggest a calcium-dependent insertion of synexin into phosphatidylserine bilayers, FEBS Lett. 217: 25–31.PubMedCrossRefGoogle Scholar
  39. 39.
    Debye, P., 1929, Polar Molecules. Dover, New York.Google Scholar
  40. 40.
    Rojas, E., 1976, Gating mechanism for activation of the sodium conductance in nerve membranes, Cold Spring Harbor Symp. Quant. Biol. XL: 305–320.CrossRefGoogle Scholar
  41. 41.
    Pollard, H. B., and Rojas, E., 1988, Calcium-activated synexin forms highly selective, voltage-gated calcium channels in phosphatidylserine bilayer membranes, Proc. Nat. Acad. Sci. USA 85: 2974–2978.PubMedCrossRefGoogle Scholar
  42. 42.
    Pollard, H. B., Creutz, C. E., and Pazoles, C. J., 1981, Mechanisms of calcium action and hormone release during exocytosis, Rec. Prog, in Horm. Res. R. O. Greep, ed. Academic, New York 37: 299–322.Google Scholar
  43. 43.
    Pollard, H. B., Scott, J. H., and Creutz, C. E., 1983, Inhibition of synexin activity and exocytosis from chromaffin cells by phenothiazine drugs, Biochem. Biophys. Res. Comm. 113: 908–915.PubMedCrossRefGoogle Scholar
  44. 44.
    Miller, R. J., 1987, Multiple calcium channels and normal function. Science 235: 46–52.PubMedCrossRefGoogle Scholar
  45. 45.
    Pollard, H. B., Rojas, E., and Bums, A. L., 1987, Synexin and chromaffin granule membrane fusion: A novel “hydrophobic bridge” hypothesis for driving and directing the fusion process, Ann. New York Acad. Sci. 493: 524–551.CrossRefGoogle Scholar
  46. 46.
    Pollard, H. B., Rojas, E., Bums, A. L., and Parra, C., 1988, Synexin calcium and the hydrophobic bridge hypothesis for membrane fusion, in: Molecular Mechanisms of Membrane Fusion (S. Ohki, D. Doyle, T. Flanagan, S. W. Hui, and E. Mayhew, Eds.) Plenum, New York, pp. 341–355.CrossRefGoogle Scholar
  47. 47.
    Blumenthal, R., 1987, Membrane fusion, Currents Topics in Membrane and Transport 253: 2858–2866.Google Scholar
  48. 48.
    Drust, D. S., and Creutz, C. E., 1988, Aggregation of chromaffin granules by calpactin at micro-molar levels of calcium, Nature 331: 88–91.PubMedCrossRefGoogle Scholar
  49. 49.
    Sudhof, T. C., Ebbecke, M., Walker, J. H., Fritsche, U., and Boustead, C., 1984, Isolation of mammalian calelectrins: A new class of ubiquitous Ca2+ -regulated proteins, Biochemistry 23: 1103–1109.PubMedCrossRefGoogle Scholar
  50. 50.
    Pollard, H. B., Bums, A. L., and Rojas, E., 1988, A molecular basis for synexin-driven calcium-dependent membrane fusion, J. Exptl. Biology 139: 267–286.Google Scholar
  51. 51.
    Sussman, K. E., Pollard, H. B., Leitner, J. W., Nesher, R., Adler, J., and Cerasi, E., 1983, Differential Control of insulin secretion and somatostation receptor recruitment in isolated islets, Biochem. J., 214:225–230.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Eduardo Rojas
    • 1
  • A. Lee Burns
    • 1
  • Harvey B. Pollard
    • 1
  1. 1.Laboratory of Cell Biology and Genetics, National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaUSA

Personalised recommendations