Advertisement

Conduction in n+-GaAs Wires

  • P. C. Main
  • R. P. Taylor
  • L. Eaves
  • S. Thoms
  • S. P. Beaumont
  • C. D. W. Wilkinson
Part of the NATO ASI Series book series (NSSB, volume 214)

Abstract

For clear observation of interference between waves it is a necessary condition that the waves must maintain a constant phase relationship with respect to each other. This coherence is easily achieved with laser sources in optics. In metals and semiconductors coherence can be lost either by thermal smearing of the Fermi level or by the presence of inelastic scattering and so it is best achieved at low temperatures. Such interference phenomena have been observed in multiply-connected structures at low temperatures1. However, even in a simple wire the electrical resistance is modified by interference between scattered electron waves. Thus an ensemble of wires all prepared in identical macroscopic fashion would not all have the same resistance since the microscopic configuration of scatterers, which defines the interference paths, will be different for each wire. The application of a magnetic field changes the flux through each loop formed by the interfering waves and hence introduces a phase difference between the electron waves so that the magnetoresistance of each wire fluctuates as the field increases. Since the size and distribution of interference loops is determined by the microscopic scattering configuration, each wire has a unique magnetoresistance or “magnetofingerprint”.

Keywords

Weak Localisation Electron Heating Negative Magnetoresistance Nominal Width Microscopic Configuration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    See for example R.A. Webb, S. Washburn, C.P. Umbach and R.B. Laibowitz, 1985, Phys.Rev. Lett. 54, 2696.ADSCrossRefGoogle Scholar
  2. 2.
    S. Thorns, S.P. Beaumont, C.D.W. Wilkinson, J. Frost and C.R. Stanley, 1986, “Ultrasmall Device Fabrication Using Dry Etching of GaAs” in Proceedings of Microelectronic Engineering 1986, H.W. Lehman and Ch. Bleicker, eds., Elsevier, Holland.Google Scholar
  3. 3.
    See for example S.B. Kaplan and A. Harstein, 1986, Phys. Rev. Lett. 56, 2403.Google Scholar
  4. 4.
    G. Bergmann, 1984, Physics Reports, 107, 1.ADSCrossRefGoogle Scholar
  5. 5.
    P.A. Lee, A.D. Stone and H. Fukuyama, 1987, Phys. Rev. B35, 1039.ADSCrossRefGoogle Scholar
  6. 6.
    R.P. Taylor, M.L. Leadbeater, G.P. Whittington, P.C. Main, L. Eaves, S.P. Beaumont, I. McIntyre, S. Thoms and C.D.W. Wilkinson, 1988, Surface Science, 196, 52.ADSCrossRefGoogle Scholar
  7. 7.
    W.J. Skocpol, 1987, Physica Scripta, T19, 95.CrossRefGoogle Scholar
  8. 8.
    G.P. Whittington, 1989, Ph.D. Thesis, University of Nottingham.Google Scholar
  9. 9.
    S. Morita, N. Mikoshiba, Y. Koike, T. Fukose, M. Kitagawa and S. Ishida, 1984, J. Phys. Soc. Japan, 53, 2185.Google Scholar
  10. 10.
    E. Abrahams, P.W. Anderson, P.A. Lee and T.V. Ramakrishan, 1981, Phys. Rev. B24, 6783.ADSCrossRefGoogle Scholar
  11. 11.
    M.L. Roukes, M.R. Freeman, R.S. Germain, R.C. Richardson and M.B. Ketchen, 1985, Phys Rev. Lett., 55, 422ADSCrossRefGoogle Scholar
  12. 12.
    K. Gray, 1981, “Non Equilibrium Superconductivity, Phonons and Kapitza Boundaries”, Plenum Press.Google Scholar
  13. 13.
    R.P. Taylor, 1988, Ph.D. Thesis, University of Nottingham.Google Scholar
  14. 14.
    T.N. Theis, 1987, Inst. Phys. Conf. Ser. 91, Chapter 1.Google Scholar
  15. 15.
    A. Long, Dept. of Physics, University of Glasgow, to be published.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • P. C. Main
    • 1
  • R. P. Taylor
    • 1
  • L. Eaves
    • 1
  • S. Thoms
    • 2
  • S. P. Beaumont
    • 2
  • C. D. W. Wilkinson
    • 2
  1. 1.Department of PhysicsUniversity of NottinghamNottinghamUK
  2. 2.Department of Electronic and Electrical EngineeringUniversity of GlasgowGlasgowUK

Personalised recommendations