Ballistic Electron Transport in a Gated Constriction

  • T. J. Thornton
  • M. L. Roukes
  • A. Scherer
  • B. van der Gaag
Part of the NATO ASI Series book series (NSSB, volume 214)


It is now clear that the conductance of a short, narrow constriction in a 2DEG is quantised in units of 2e2/h1to8. This quantisation has so far only been demonstrated in short, split-gate FETs9 in which the width of the constriction can be continuously varied thereby changing the number of occupied quantum channels (subbands). Squeezing the constriction reduces the number of i occupied subbands and the resistance increases in a step like fashion with plateaus at values of R=h/2ie2. Split gates have been used in various configurations to demonstrate the magnetic depopulation of 1D subbands10, electron focussing11 and the non-additivity of ballistic resistors12. In this paper we show that the same quantisation exists in devices of constant width but variable carrier concentration (Fermi energy) and we discuss preliminary results from two devices of different aspect ratio.


Carrier Concentration Gate Voltage Potential Step Depletion Width Narrow Constriction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    B J van Wees, H van Houten, C W J Beenakker, J G Williamson, L P Kouwenhoven, D van der Marel, C T Foxon Phys Rev Lett, 60, 848 (1988)ADSCrossRefGoogle Scholar
  2. (2).
    D A Wharam, T J Thornton, R Newbury, M Pepper, H Ahmed, J E F Frost, D G Hasco, D C Peacock, D A Ritchie, G A C Jones J Phys C:Solid State Phys 21, L209 (1988)ADSCrossRefGoogle Scholar
  3. (3).
    Y Imry in “Directions in Condensed Matter Physics” G Grinstein and Gmazenko eds, World Scientific Press, Singapore p101 (1986).Google Scholar
  4. (4).
    L I Glazman, G B Lesovich, D E Khmelnitskii, R I Shlukher Pys’ma vZhETF 48, (1988)Google Scholar
  5. (5).
    G Kirczenow Solid State Comm 68, 715 (1988)Google Scholar
  6. (6).
    A Szafer, A D Stone Phys Rev Lett 62, 300 (1989)ADSCrossRefGoogle Scholar
  7. (7).
    D van der Marel, E G Haanappel Phys Rev B 39, 5484 (1989)ADSCrossRefGoogle Scholar
  8. (8).
    E Tekman and S Ciraci submitted to Phys Rev BGoogle Scholar
  9. (9).
    T J Thornton, M Pepper, H Ahmed, D Andrews, G J Davies Phys Rev LettGoogle Scholar
  10. (10).
    K-F Berggren, T J Thornton, D J Newson M Pepper Phys Rev Lett 57, 1769 (1986)ADSCrossRefGoogle Scholar
  11. (11).
    H van Houten, B J van Wees, J E Mooij, C W J Beenakker, J G Williamson, C T Foxon Europhys Lett 5, 712 (1988)ADSGoogle Scholar
  12. (12).
    D A Wharam, M Pepper, H Ahmed, J E F Frost, D G Hasco, D C Peacock, D A Ritchie, G A C Jones J Phys C:Solid State Phys 21, L887 (1988)ADSCrossRefGoogle Scholar
  13. (13).
    A Scherer, M L Roukes submitted to Appl Phys LettGoogle Scholar
  14. (14).
    K-F Berggren, G Roos, H van Houten Phys Rev B 37, 10118 (1988)ADSCrossRefGoogle Scholar
  15. (15).
    See for example Szafer and Stone IBM J Res Dev 32, 384 (1988)Google Scholar
  16. (16).
    G Kirczenow to be publishedGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • T. J. Thornton
    • 1
  • M. L. Roukes
    • 1
  • A. Scherer
    • 1
  • B. van der Gaag
    • 1
  1. 1.BellcoreRed BankUSA

Personalised recommendations