Excitons in Low Dimensional Semiconductors

  • L. Viña
  • E. E. Mendez
  • W. I. Wang
  • J. C. Maan
  • M. Potemski
  • G. E. W. Bauer
Part of the NATO ASI Series book series (NSSB, volume 214)


We present high resolution pseudo-absorption spectra of GaAs/GaAIAs quantum wells. Information on the energy spectrum of excitons is obtained from low temperature photoluminescence excitation spectroscopy. The application of an external electric field tunes the energy of the excitons, and fine structure is observed as a result of the interaction of high-angular momentum states and the ground state of the first light-hole exciton. Their oscillator strength is enhanced by means of an external magnetic field. The observed structures are assigned to excited states of excitons by comparison with calculations of excitonic mixing in the presence of external electric and magnetic fields.


Excited State Oscillator Strength Excitonic State Zeeman Splitting Stark Shift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For an excellent review see: V S Lisitsa, Sov.Phy. Usp. 30, 927 (1987) [Usp.Fiz. Nauk 153, 379 (1987)]Google Scholar
  2. 2.
    D D Sell, Phys, Rev. B 6, 3750 (1972)ADSCrossRefGoogle Scholar
  3. 3.
    S Zemon, C Jagannath, S K Shastry, and G Lambert Solid State Commun. 65, 553 (1988)ADSCrossRefGoogle Scholar
  4. 4.
    X L Zehng, D Heiman, B Lax, F A Stair, Appl. Phys. Lett. 52, 984 (1988).Google Scholar
  5. 5.
    K J Moore, P Dawson, and C T Foxon. Phys Rev. B 34, 6022 (1986).ADSCrossRefGoogle Scholar
  6. 6.
    L Viña, R T Collins, E E Mendez, and W I Wang, Phys. Rev. Lett. 58, 832 (1987).ADSCrossRefGoogle Scholar
  7. 7.
    L W Molenkamp, G E W Bauer, R Eppenga, and C T Foxon, Phys, Rev. B 38, 6147.Google Scholar
  8. 8.
    L Viña, G E W Bauer, M Potemski, J C Maan, E E Mendez, and W I Wang, Phys. Rev B 38, 10154 (1988).ADSCrossRefGoogle Scholar
  9. 9.
    E E Mendez, F Agullo-Rueda and J M Hong, Phys. Rev. Lett. 23, 2426 (1988).ADSCrossRefGoogle Scholar
  10. 10.
    J C Maan, G Belle, A Fasolino, M Altarelli, and K Ploog, Phys. Rev. Lett B 30 2253 (1984).ADSGoogle Scholar
  11. 11.
    D C Rogers, J Singleton, R J Nicholas, C T Foxon, and K Woodbridge, Phys. Rev. B 34, 4002 (1986).ADSCrossRefGoogle Scholar
  12. 12.
    L Viña, Surf. Science 196, 569 (1988).ADSCrossRefGoogle Scholar
  13. 13.
    D A B Miller, D S Chemla, T C Damen, A C Gossard, W Wiegmann, T H Wood, and C A Burrus, Phys. Rev B 32, 1043 (1985)ADSCrossRefGoogle Scholar
  14. 14.
    J C Maan, private communication.Google Scholar
  15. 15.
    R T Collins, L Vina, W I Wang, L L Chang, L Esaki, K v Klitzing and K Ploog. Phys. Rev, B 36, 1531 (1987).Google Scholar
  16. 16.
    L C Andreani and A Pasquarello, Europhys. Lett. 6, 259 (1988).ADSCrossRefGoogle Scholar
  17. 17.
    G E W Bauer and T Ando, Phys. Rev B 38, 6015 (1988).ADSCrossRefGoogle Scholar
  18. 18.
    G E W Bauer and T Ando, Phys. Rev B 37, 3130 (1988).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • L. Viña
    • 1
  • E. E. Mendez
    • 2
  • W. I. Wang
    • 3
  • J. C. Maan
    • 4
  • M. Potemski
    • 4
  • G. E. W. Bauer
    • 5
  1. 1.Instituto de Ciencia de Materiales-C.S.I.C., and Departamento de Fisica AplicadaUniversidad AutonomaMadridSpain
  2. 2.IBM T J Watson Research CenterYorktown HeightsUSA
  3. 3.Electrical Engineering DepartmentColumbia UniversityNew YorkUSA
  4. 4.Max-Planck-InstitutGrenobleFrance
  5. 5.Philips Research LaboratoriesEindhovenThe Netherlands

Personalised recommendations