On the Impact of Low-Dimensionality in Quantum-Well, Wire, Dot-Semiconductor Lasers

  • Claude Weisbuch
  • Julien Nagle
Part of the NATO ASI Series book series (NSSB, volume 214)


The impact of semiconductor quantum wells on lasing, electrooptic and nonlinear properties is by now well established1. The improved material parameters originate in such various physical phenomena as reduced Density-of-States (DOS), quantum-confined wavefunctions, increased light-matter interaction through room-temperature excitons, square two-dimensional DOS, etc. It is therefore natural to expect that using lower dimensionality structures such as quantum wires or quantum dots one should obtain even better properties. We will restrict our discussion here to quantum wire and quantum dot lasers. Some recent papers have discussed the impact of low dimensional structures in the electro-optic2,3 and nonlinear fields4,5.


Quantum Wire Threshold Current Modal Gain Gain Curve Differential Gain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See e.g. the contributions in “Semiconductors and Semimetals” vol.24, “Applications ofMultiquantum Wells, Selective Doping and Superlattices”, volume editor R. Dingle, Academic, New-York, 1987Google Scholar
  2. 2.
    I. Suemune and L.A. Coldren, Band-Mixing Effects and Excitonic Optical Properties in GaAs Quantum Wire Structures-Comparison with the Quantum Wells, IEEE J.Quantum Electronics QE-24: 1778 (1988)Google Scholar
  3. 3.
    Y. Chiba and S. Ohnishi, Quantum-Confined Stark Effects on a GaAs Cluster Embedded in A1xGa1-xAs, Phvs.Rev. B38: 12988 (1988)ADSCrossRefGoogle Scholar
  4. 4.
    E. Hanamura, Very Large Optical Nonlinearity of Semiconductor Microcrystallites, Phys.Rev. B37: 1273 (1988)ADSCrossRefGoogle Scholar
  5. 5.
    T. Takagahara, Excitonic Optical Nonlinearity and Exciton Dynamics in Semiconductor Quantum Dots, Phys.Rev. B36: 9293 (1987)ADSCrossRefGoogle Scholar
  6. 6.
    J. Nagle and C. Weisbuch, The Physics of Low-Dimensional Effects in Quantum-Well Lasers, in “Quantum Wells and Superlattices Physics II”, SPIE Proceedings 943, F.Capasso, G. Döhler and J.N. Schulman eds, p. 76 (1988)Google Scholar
  7. 7.
    P. Derry, A. Yariv, K.Y. Lau, N. Bar Chaim, K. Lee and J. Rosenberg, Ultra Low-Threshold Graded-Index Separate Confinement Single-Quantum Well Buried Heterostructure (A1,Ga)As Lasers with High-Reflectivity Coatings, Appl.Phys. Lett. 50: 1773 (1987)Google Scholar
  8. 8.
    J. Nagle, S.D. Hersee, M. Krakowski, T. Weil and C. Weisbuch, Threshold Current of Single Quantum Well Lasers: The role of the confining Layers, Appl.Phys. Lett. 49: 1325 (1986)Google Scholar
  9. 9.
    Y. Arakawa and H. Sakaki, Multidimensional Quantum Well laser and Temperature Dependance of its Threshold Current, Appl.Phys.Lett. 24: 195 (1982)Google Scholar
  10. 10.
    M. Asada, Y. Miyamoto and Y. Suematsu, Gain and the Threshold of Three-Dimensional Quantum Box Lasers, IEEE J.Quantum Electronics QE-22: 1915 (1986)Google Scholar
  11. 11.
    Y. Miyamoto, M.Cao, Y. Shingai, K. Furuya, Y. Suematsu, K.G. Ravikumar and S.Arai, Light Emission from Quantum Box Structure by Current Injection, Japan.J.Appl. Phys. 26: L225 (1987)Google Scholar
  12. 12.
    K.J. Vahala, Quantum Box Fabrication Tolerance and Size Limits in Semiconductors and Their Effect on Optical Gain, IEEE J.Quantum Electronics QE-24: 523 (1988)Google Scholar
  13. 13.
    Y. Arakawa, K. Vahala and A. Yariv, Dynamic and Spectral Properties of Semiconductor Lasers with Quantum Well and Quantum Wire Effects, SurfSci. 174: 155 (1986)ADSCrossRefGoogle Scholar
  14. 14.
    T. Takahashi and Y. Arakawa, Theoretical Analysis of Gain and Dynamic Properties of Quantum Well Box Lasers, Optoelectronics 3: 155 (1988)Google Scholar
  15. 15.
    P. Roussignol, M. Kull, D. Ricard, F. de Rougemont, R. Fey and C.Flytzannis, Time-Resolved Direct Observation of Auger Recombination in Semiconductor-Doped Glasses, Appl.Phys.Lett. 51: 1882 (1987)ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Claude Weisbuch
    • 1
  • Julien Nagle
    • 1
  1. 1.Laboratoire Central de RecherchesThomson-CSFOrsay cedexFrance

Personalised recommendations