Advertisement

Raman Scattering and Photoluminescence of GaAs-Based Nanostructures

  • C. M. Sotomayor Torres
  • M. Watt
  • H. E. G. Arnot
  • R. Glew
  • W. E. Leitch
  • A. H. Kean
  • R. Cusco Cornet
  • T. M. Kerr
  • S. Thoms
  • S. P. Beaumont
  • N. P. Johnson
  • C. R. Stanley
Part of the NATO ASI Series book series (NSSB, volume 214)

Abstract

Recent developments in Electron Beam Lithography (EBL) and Reactive Ion Etching (RIE), among other semiconductor fabrication techniques, have enabled semiconductor material to be patterned into arrays of quantum well wires (QWW) and quantum dots (OD). The regime of 1- and 0-D quantization is achieved by reducing the dimensions of the semiconductor to lengths comparable to the de Broglie wavelength. Optical spectroscopic evidence of 1-D quantization has been reported by the group at A T & T Bell Laboratories1, at Stuttgart University2 and at the NTT laboratories in Japan3. 0-D quantization has been harder to confirm in optical spectroscopy. So far, significant work has taken place in assessing the interaction of photons with QD with particular emphasis placed on radiative recombination mechanisms4.

Keywords

Electron Beam Lithography Surface Phonon Integrate Emission Intensity Quantum Well Wire Overgrow Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J Cibert, P M Petroff, G J Dolan, D J Werder, S J Pearton, A C Gossard and J H English, Superlattices and Microstructures, 3 35 (1987) and H Temkin, G J Dolan, M B Panish and S N G Chu, Appl Phys Lett, 50, 413 (1987) and references therein.Google Scholar
  2. 2.
    A Forchel, H Leier, B E Maile and R German, Festkörperprobleme, 28, 99 (1988) and references thereinGoogle Scholar
  3. 3.
    Y Hirayama and H Okamoto in: “Physics and Technology of Submicron Structures”, Springer Series in Solid State Sciences, 83, p. 45 Eds. H Heinrich, G Bauer and F Kuchar (Springer, Berlin, 1988 ).Google Scholar
  4. 4.
    see, for example, S R Andrews et al in this volumeGoogle Scholar
  5. 5.
    S P Beaumont in: “Nanostructure Physics and Fabrication”, Eds M A Reed and W P Kirk, Academic Press (in press)Google Scholar
  6. 6.
    M Watt, C M Sotomayor Torres, R Cheung, C D W Wilkinson, H E G Arnot and S P Beaumont, J Mod Opt, 35, 365 (1988)ADSCrossRefGoogle Scholar
  7. 7.
    M Watt, H E G Arnot, C M Sotomayor Torres and S P Beaumont in: Nanostructure Physics and Fabrication, Eds. M A Reed and W P Kirk, Academic Press (in press)Google Scholar
  8. 8.
    R Englman and R Ruppin, J Phys C, 1, 614 (1968)ADSCrossRefGoogle Scholar
  9. 9.
    M Watt, C M Sotomayor Torres, H E G Arnot and S P Beaumont (to be published)Google Scholar
  10. 10.
    H E G Arnot et al (to be published)Google Scholar
  11. 11.
    see, for example, L Lassabatere in: “Semiconductor Interfaces: Formation and Properties”, Springer Proc. in Physics, 22, p.239, Eds. G Lelay, J Derrien and N Boccara ( Springer, Berlin, 1987 ).Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • C. M. Sotomayor Torres
    • 1
  • M. Watt
    • 1
  • H. E. G. Arnot
    • 1
  • R. Glew
    • 2
  • W. E. Leitch
    • 1
  • A. H. Kean
    • 1
  • R. Cusco Cornet
    • 1
  • T. M. Kerr
    • 3
  • S. Thoms
    • 1
  • S. P. Beaumont
    • 1
  • N. P. Johnson
    • 1
  • C. R. Stanley
    • 1
  1. 1.Nanoelectronics Research Centre, Dept Electronics and Electrical EngineeringGlasgow UniversityGlasgowGB
  2. 2.STC Technology Ltd.HarlowGB
  3. 3.GEC Hirst Research CentreWembleyGB

Personalised recommendations