Optical Emission from Quantum Wires

  • A. Forchel
  • B. E. Maile
  • H. Leier
  • G. Mayer
  • R. Germann
Part of the NATO ASI Series book series (NSSB, volume 214)


The physical properties of semiconductors with dimensions of the order of the de Broglie wavelength of electrons depend strongly on the device dimensions.1 In thin semiconductor heterostructures (quantum wells) the effective band gap is determined by the quantum well thickness in addition to the bulk properties of the quantum well material.2 This allows to increase the band gap in thin quantum wells by hundreds of meV if a suitable confinement material is employed. Furthermore the energy dependence of the density of states changes from a proportionality to E1/2 to a step function.


Quantum Efficiency Quantum Wire Electron Beam Lithography Dead Layer Surface Recombination Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L. Esaki and R. Tsu, IBM Research Note RC-2418 (1969; L. Esaki and R. Tsu, IBM J. Res. Develop. 14, 61 (1970)Google Scholar
  2. [2]
    R. Dingle, Festkörperprobleme/Advances in Solid State Physics, Vol. XV, ed. by H.J. Queisser ( Vieweg, Braunschweig 1975 ), p. 21Google Scholar
  3. [3]
    G. Weimann, W. Schlapp, in Springer Series in Solid State Physics 53 S. 88, herausgegeben von G. Bauer, F. Kuchar, H. Heinrich, Springer Verlag, Berlin, Heidelberg, New York, Tokyo, 1984Google Scholar
  4. [4]
    H. Kawai, K. Kaneko, N. Watanabe, J. Appl. Phys. 56, 463 (1984)ADSCrossRefGoogle Scholar
  5. [5]
    Y. Arakawa and H. Sakaki, Appl. Phys. Lett. 40, 939 (1982)ADSCrossRefGoogle Scholar
  6. [6]
    R. E. Howard, L.D. Jackel and W.J.Skocpol, Microelectronic Engineering 3, 3 (1985)CrossRefGoogle Scholar
  7. [7]
    M. Isaacson and A. Muray, J.Vac. Sci. Technol. 19 1117 (1981)ADSCrossRefGoogle Scholar
  8. [8]
    F. Emoto, K. Gamo, S.Namba, N. Samoto and R. Shimizu, Jap.J. Appl. Phys. 24 Google Scholar
  9. [9]
    M.Komuro, H. Hiroshima, H. Tanoue and T. Kanayama, J. Vac. Sci. Technol. B4, 985 (1983)Google Scholar
  10. [10]
    A.C. Warren, I.Plotnik, E.H. Anderson, M.L. Schattenburg, D.A.Antoniadis and H.I. Smith, J. Vac.Sci. Technol. B4, 3655 (1986)Google Scholar
  11. [11]
    D.A. Wharam, T.J. Thornton, R. Newbury, M. Pepper, H.Ahmed, J.E.F. Frost, D.G. H.sko, D.C. Peacock, D.A. Ritchie, G.A.C. Jones, J.Phys. C. Vol 21, L209 (1988)Google Scholar
  12. [12]
    B.J. van Wees, H. van Houten, C.W.J. Beenakker, J.G. Williamson, L.P. Kouvenhoven, D. van der Marel, C.T. Foxon, Phys. Rev. Lett., Vol 60, No 9, 848 (1988)ADSCrossRefGoogle Scholar
  13. [13]
    H. Temkin, G.J. Dolan, M.B. Panish, and S.N.G. Chu, Appl Phys. Lett 50, 413 (1987)ADSCrossRefGoogle Scholar
  14. [14]
    J. Cibert, P.M. Petroff, G.J. Dolan, S.J. Pearton, A.C. Gossard, and J. H. English, Appl. Phys. Lett. 49, 1275 (1986)ADSCrossRefGoogle Scholar
  15. [15]
    M. Tsuchiya, J.M. Gaines. R.H. Yan, R.J. Simes, P.O. Holtz, L.A. Coldren, P.M. Petroff, Phys. Rev. Lett. 62, 466 (1989)ADSCrossRefGoogle Scholar
  16. [16]
    B.E. Maile, A. Forchel, R. Germann, A. Menschig, H.P. Meier, D. Grützmacher, J. Vac. Sci. Technol. B 6, 2308 (1988)CrossRefGoogle Scholar
  17. [17]
    B.E. Maile, A. Forchel, R. Germann, D. Grützmacher, Appl. Phys. Lett., 17. April 1989Google Scholar
  18. [18]
    Y. Hirayama, S. Tarucha, Y. Suzuki, and H. Okamoto, Phys. Rev. B37, 2274 (1988)CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • A. Forchel
    • 1
  • B. E. Maile
    • 1
  • H. Leier
    • 1
  • G. Mayer
    • 1
  • R. Germann
    • 1
  1. 1.4.Physikalisches InstitutUniversität StuttgartStuttgart 80FR-Germany

Personalised recommendations