Understanding Quantum Confinement in Zero-Dimensional Nanostructures: Optical and Transport Properties

  • Garnett W. Bryant
Part of the NATO ASI Series book series (NSSB, volume 214)


In zero-dimensional semiconductor nanostructures with motion confined in all directions, electronic states are discrete. In contrast, the spectrum of single-particle states in a quantum well or quantum-well wire is a set of subbands of two- or one-dimensional states, respectively. Each subband is a continuum of states. Because the single-particle spectrum for a zero-dimensional quantum box is discrete rather than a continuum, understanding confinement effects in these systems presents unique challenges not addressed for wells and wires.


Exciton State Coulomb Energy Confinement Energy Lateral Confinement Discrete Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. J. Sandroff, D. M. Hwang, and W. M. Chung, Carrier confinement and special crystallite dimensions in layered semiconductor colloids, Phys. Rev. B, 33: 5953 (1986).CrossRefGoogle Scholar
  2. 2.
    J. Warnock and D. D. Awschalom, Picosecond studies of electron confinement in simple colored glasses, Appl. Phys. Lett. 48: 425 (1986).Google Scholar
  3. 3.
    L. Brus, Zero-dimensional “exciton” in semiconductor clusters, IEEE J. Quantum Electron. QE-22:1909 (1986) and the references therein.Google Scholar
  4. 4.
    M. A. Reed, R. T. Bate, K. Bradshaw, W. M. Duncan, W. R. Frensley, J. W. Lee, and H. D. Shih, Spatial quantization in GaAs-AlGaAs multiple quantum dots, J. Vac. Sci. Technol. B4: 358 (1986).ADSGoogle Scholar
  5. 5.
    K. Kash, A. Scherer, J. M. Worlock, H. G. Craighead, and M. C. Tamargo, Optical spectroscopy of ultrasmall structures etched from quantum wells, Appl. Phys. Lett. 49: 1043 (1986).Google Scholar
  6. 6.
    J. Cibert, P. M. Petroff, G. J. Dolan, S. J. Pearton, A. C. Gossard, and J. H. English, Optically detected carrier confinement to one and zero dimension in GaAs quantum well wires and boxes, Appl. Phys. Lett. 49: 1275 (1986).Google Scholar
  7. 7.
    H. Temkin, G. J. Dolan, M. B. Panish, and S. N. G. Chu, Low-temperature photoluminescence from InGaAs/InP quantum wires and boxes, Appl. Phys. Lett. 50: 413 (1987).Google Scholar
  8. 8.
    Y. Miyamoto, M. Cao, Y. Shingai, K. Furuya, Y. Suematsu, K. G. Ravikumar, and S. Arai, Light emission from quantum-box structure by current injection, Jpn. J. Appl. Phys. 26: L225 (1987).ADSCrossRefGoogle Scholar
  9. 9.
    P. M. Petroff, J. Cibert, A. C. Gossard, G. J. Dolan, and C. W. Tu, Interface structure and optical properties of quantum wells and quantum boxes, J. Vac. Sci. Technol. B5: 1204 (1987).CrossRefGoogle Scholar
  10. 10.
    M. A. Reed, J. N. Randall, R. J. Aggarwal, R. J. Matyi, T. M. Moore, and A. E. Wetsel, Observation of discrete electronic states in a zero-dimensional semiconductor nanostructure, Phys. Rev. Lett. 60:535 (1988). After this chapter was prepared, M. Reed reported a new analysis of the data which indicated that the observed tunneling occurs through the n=1 resonance rather than the n=2 resonance. The qualitative physics of qunatum box resonance tunneling discussed in this chapter is the same for both resonances.Google Scholar
  11. 11.
    S. Schmitt-Rink, D. A. B. Miller, and D. S. Chemla, Theory of the linear and nonlinear optical properties of semiconductor microcrystallites, Phys. Rev. B 35: 8113 (1987).CrossRefGoogle Scholar
  12. 12.
    G. W. Bryant, Hydrogenic impurity states in quantum-well wires: shape effects, Phys. Rev. B 31: 7812 (1985).CrossRefGoogle Scholar
  13. 13.
    G. W. Bryant, Hydrogenic impurity states in quantum-well wires, Phys. Rev. B 29: 6632 (1984).CrossRefGoogle Scholar
  14. 14.
    G. W. Bryant, Excitons in quantum boxes: correlation effects and quantum confinement, Phys. Rev. B, 37: 8763 (1988).CrossRefGoogle Scholar
  15. 15.
    G. W. Bryant, Electrons and holes in quantum boxes, in: “Interfaces, Quantum Wells, and Superlattices,” C. R. Leavens and R. Taylor, eds. Plenum, New York (1988).Google Scholar
  16. 16.
    G. W. Bryant, Excitons in zero-dimensional quantum boxes: correlation and confinement, Comments Condensed Matter Phys. 14: 277 (1989).Google Scholar
  17. 17.
    M. Asada, Y. Miyamoto, and Y. Suematsu, Gain and the threshold of three-dimensional quantum-box lasers, IEEE J. Quantum Electron. QE-22: 1915 (1986).Google Scholar
  18. 18.
    D. A. B. Miller, D. S. Chemla, and S. Schmitt-Rink, Electroabsorption of highly confined systems: theory of the quantum-confined FranzKeldysh effect in semiconductor quantum wires and dots, Appl. Phys. Lett. 52: 2154 (1988).Google Scholar
  19. 19.
    K. J. Vahala, Quantum box fabrication tolerance and size limits in semiconductors and their effect on optical gain, IEEE J. Quantum Electron. QE-24: 523 (1988).Google Scholar
  20. 20.
    T. Takagahara, Excitonic optical nonlinearity and exciton dynamics in semiconductor quantum dots, Phys. Rev. B 36: 9293 (1987).CrossRefGoogle Scholar
  21. 21.
    L. Banyai, Y. Z. Hu, M. Lindberg, and S. W. Koch, Third-order optical nonlinearities in semiconductor nanostructures, Phys. Rev. B 38: 8142 (1988).CrossRefGoogle Scholar
  22. 22.
    E. Hanamura, Very large optical nonlinearity of semiconductor microcrystallites, Phys. Rev. B 37: 1273 (1988).CrossRefGoogle Scholar
  23. 23.
    E. Hanamura, Rapid radiative decay and enhanced optical nonlinearity of excitons in a quantum well, Phys. Rev. B 38: 1228 (1988).CrossRefGoogle Scholar
  24. 24.
    G. W. Bryant, Electronic band structure of semiconductor nanostructure arrays, Phys. Rev. B (submitted). See references therein for other work.Google Scholar
  25. 25.
    G. W. Bryant, Resonant tunneling in zero-dimensional nanostructures, Phys. Rev. B 39: 3145 (1989).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Garnett W. Bryant
    • 1
  1. 1.McDonnell Douglas Research LaboratoriesSt. LouisUSA

Personalised recommendations