Magnetoresistance and Magnetocapacitance in a Two-Dimensional Electron Gas in the Presence of a One-Dimensional Superlattice Potential

  • Dieter Weiss
Part of the NATO ASI Series book series (NSSB, volume 214)


A novel type of magnetoresistance oscillation is observed in a two-dimensional electron gas in a high mobility GaAs-AlGaAs heterostructure with a holographically induced lateral periodic modulation in one direction. The modulation arises due to the persistent photoconductivity of the samples at low temperatures. The experiments show that the 1/B periodicity of the additional oscillations is determined by the carrier density N s and the period a of the grating, reflecting the commensurability of cyclotron diameter and modulation period. The key to the explanation of the novel magnetotransport oscillations is an oscillatory linewidth of the modulation broadened Landau bands. To demonstrate this we have performed magnetocapacitace measurements in order to obtain direct information about the density of states of the modulated two-dimensional electron gas


Carrier Density Landau Level Flat Band Hall Resistance Persistent Photoconductivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L. Shubnikov, W. J. de Haas, Leiden Commun. 207a, 207c, 207d, 210a (1930)Google Scholar
  2. [2]
    D. Weiss, K. v. Klitzing, K. Ploog, G. Weimann Europhys. Lett. 8, 179 (1989; also in The Application of High Magnetic Fields in Semiconductor Physics, ed. G. Landwehr, Springer Series in Solid-State Sciences (Berlin), to be publishedGoogle Scholar
  3. [3]
    R. R. Gerhardts, D. Weiss, K. v. Kitzing; Phys. Rev. Lett. 62, 1173 (1989)ADSCrossRefGoogle Scholar
  4. [4]
    K. Tsubaki, H. Sakaki, J. Yoshino, Y. Sekiguchi, Appl. Phys. Lett. 45, 663 (1984)ADSCrossRefGoogle Scholar
  5. [5]
    For recent work in this field see Physics and Technology of Submicron Structures, Vol. 83 of Springer Series Solid-State Sciences, ed. by H. Heinrich, G. Bauer, and F. Kuchar ( Springer, Berlin, 1988 )Google Scholar
  6. [6]
    R. W. Winkler, J. P. Kotthaus, K. Ploog; Phys. Rev. Lett. 62, 1177 (1989)ADSCrossRefGoogle Scholar
  7. [7]
    M. Abramowitz and I. A. Stegun, ed., Handbook of Mathematical Functions, (Dover Publications, New York (1972))Google Scholar
  8. [8]
    C.W.J. Beenakker, preprintGoogle Scholar
  9. [9]
    T. P. Smith, B. B. Goldberg, P. J. Stiles, M. Heiblum, Phys. Rev. B32, 2696 (1985)ADSGoogle Scholar
  10. [10]
    V. Mosser, D. Weiss, K. v. K.itzing, K. Ploog, G. Weimann, Solid State Commun. 58, 5 (1986)ADSCrossRefGoogle Scholar
  11. [11]
    V. Gudmundsson, R. R. Gerhardts, Phys. Rev. B35, 8005 (1987)ADSCrossRefGoogle Scholar
  12. [12]
    E. Gornik, R. Lassnig, G. Strasser, H. L. Störmer, A. C. Gossard, W. Wiegmann, Phys. Rev. Lett. 54, 1820 (1985);ADSCrossRefGoogle Scholar
  13. J. P. Eisenstein, H. L. Störmer, V. Narayanamurti, A. Y. Cho, A. C. Cossard, Phys. Rev. Lett. 55, 1820 (1985) 539 (1985)Google Scholar
  14. [13]
    D. Weiss, K. v. Klitzing in High Magnetic Fields in Semiconductor Physics, ed. G. Landwehr, Springer Series in Solid-State Sciences 71, (Berlin), 1987Google Scholar
  15. [14]
    T. Ando, Y. Uemura, J. Phys. Soc. Jpn. 36, 959 (1974)CrossRefGoogle Scholar
  16. [15]
    R. R. Gerhardts, Z. Physik B21, 285 (1975)ADSGoogle Scholar
  17. [16]
    D. Weiss, C. Zhang, R.R. Gerhardts, K. v. Klitzing, G. Weimann, submitted to Phys. Rev. BGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Dieter Weiss
    • 1
  1. 1.Max-Planck-Institut für FestkörperforschungStuttgart 80Federal Republic of Germany

Personalised recommendations