Bound and Resonant States in Quantum Wire Structures

  • François M. Peeters
Part of the NATO ASI Series book series (NSSB, volume 214)


In recent years1,2 there has been a growing interest in systems of reduced dimensionality. A variety of phenomena exhibiting quantum interference between alternative carrier paths has been studied in such systems including the Aharonov-Bohm effect2,3, ‘universal’ fluctuations1,4, and resonant phenomena.. New quantum-size effects have been found such as: non-local bend resistance5,6. the quenching of the quantum Hall effect7, quantized point contact resistance8, the oscillatory behavior of the capa.citance9 and of the dc-conductivity10,11,... it has also become clear that the behavior of nanostructures may resemble, in many ways, properties of waveguides. This notion has recently found clear experimental verification5. Nanostructures offer the possibility of achieving device functions12 by the use of quantum interference effects. Such functions would be analogous to those achieved in two-terminal resonant tunneling devices13,l4.


Transmission Coefficient Quantum Wire Total Transmission Hard Wall Lateral Confinement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Landauer. IBM J. Res. Develop. 32, 306 (1988).Google Scholar
  2. 2.
    See e.g. Physics and Ícchrrology of,Sul micron.sirrictures, Eds. 11. Heinrich. G. Bauer and F. Kuchar (Springer-Verlag. N.Y.. 1988 ).Google Scholar
  3. 3.
    C.P. Umbach, C.V. Haesendonck. 8.11. Laibowitz. S. Washburn and R.A. Webb. Phys. Rev. Lett. 56, 386 (1988).ADSCrossRefGoogle Scholar
  4. 4.
    C.P. Umbach. S. Washburn, R.B. Laihowitz and R.A. Webb, Phys. Rev. B30..10. 1, 8 (1984).Google Scholar
  5. 5.
    G. Timp, H.U. Barang?r, P. de Vegvar..1.E. Cunningham. R.E. Howard. R. Rehringer and P.M. Mankiewich. Phys. Rev. Let t. 60. 2081 (1988).Google Scholar
  6. 6.
    See also H.U. Baranger and A.D. Stone (in this pi oceedings).Google Scholar
  7. 7.
    M.L. Roukes, A. Scherer. S. J. A.len. Jr., H.G. Craighead, R.M. Ruthen, E.D. Beebe and J.P. Harbison. Phys. Rev. Lett. 59. 3011 (1987).Google Scholar
  8. 8.
    B.J. van Wees, H. van Houten, C.W.J. Beenakker, J.G. Williamson, L.P. Kouwenhoven, D. van der Marel and C.T. Foxon. Phys. Rev. Lett. 60, 848 (1988).ADSCrossRefGoogle Scholar
  9. 9.
    T.D. Smith III, H. Arnot. a.M. Hong. C.M. Knoedler. S.E. Laux and H. Smid. Phys. Rev. Lett. 59, 2801 (1987).ADSGoogle Scholar
  10. 10.
    T. Ohshima, M. Okada, M. Matsuda. N. Yokoyarua and A. Shibatomi, Superlattices and Microstructures (1989).Google Scholar
  11. 11.
    P. Vasilopoulos and F.M. Peeters (to be published I.Google Scholar
  12. 12.
    F. Sots, M. Macucci, U. Ravaioli and K. liess. Phs. Rev. Lett. 54. 350 (1989).Google Scholar
  13. 13.
    T.C.L.G. Sollher, W.D. Goodhue. P.E. Tannenwale. C.D. Parker and D.D. Pech, Appl. Phys. Lett. 43, 588 (1983).ADSCrossRefGoogle Scholar
  14. 14.
    F. Ca.passo, in Semiconductors and Scorintelals (Academic Press, New York, 1987), Vol. 24, Ch. 6.Google Scholar
  15. 15.
    F. Lenz, J.T. Londergan, E.J. Moniz. R. Rosenfelder. M. Stingl and K. Yazaki. Ann. Phys. 170. 65 (1986).ADSCrossRefGoogle Scholar
  16. 16.
    F.M. Peeters, Phys. Rev. Lett. 61, 589 (1988).ADSCrossRefGoogle Scholar
  17. 17.
    G. Kirczenow, Phys. Rev. Lett. 62, 1920 (1989).ADSCrossRefGoogle Scholar
  18. 18.
    R.G. Ravenhall, H.W. Wyld and R.L. Schult, Phys. Rev. Lett. 62, 1780 (1989).ADSCrossRefGoogle Scholar
  19. 19.
    H.U. Baranger and A.D. Stone, Phys. Rev. Lett. (to be published).Google Scholar
  20. 20.
    A.M. Chang and T.Y. Chang (to be published).Google Scholar
  21. 21.
    C.J. Ford, S. Washburn, M. Büttiker, C.M. Kno dler and J.M. Hong, Phys. Rev. Lett., (1989).Google Scholar
  22. 22.
    R.L. Schult, D.G. Raveahall and H.W. Wyld, Phys. Rev. B39, 5476 (1989).ADSCrossRefGoogle Scholar
  23. 23.
    D. van der Marel and 1;.G. Haanapel. Phys. Rev. B39. 7811 (1989).CrossRefGoogle Scholar
  24. 24.
    E. Kapon, D.M. Hwang, R. Bhat and M.C. Tamargo, Superlattices and Microstructures 4, 297 (1988); E. Kapon, M.C. Tamargo and D.M. Hwang, Appl. Phys. Lett. 50, 347 (1987); E. Kapon, J.P. Harbison, C.P. Yun and N.G. Stoffel, Appl. Phys. Lett. 52, 607 (1988).Google Scholar
  25. 25.
    A.D. Stone and A. Szafer, Phys. Rev. Lctt. 62, 300 (1989).ADSGoogle Scholar
  26. 26.
    D. van der Marel et al, in proceedings of the Symposium on Nanostructure Physics and Fabrication, Eds. W.P. Kirk and M. Reed (Academic Press, N.Y., 1989 ).Google Scholar
  27. 27.
    R.J. van Wees, L.P. Kouwenboven. (’.J.P.M. IIarmans..1G. Williamson, C.E. Timmering, M.E.I. Broekaart, C.T. Foxon and J.J. Harris (to be published).Google Scholar
  28. 28.
    R. Landauer, IBM J. Res. Develop. 1, 233 (1987) and Z. Phys. B68, 217 (1987).Google Scholar
  29. 29.
    M. Büttiker, Phys. Rev. Lett. 59. 1761 (1986).CrossRefGoogle Scholar
  30. 30.
    F.M. Peeters, Superlattices and Microstructures (1989).Google Scholar
  31. 31.
    G. Kirczenow, Solid Stat. Commun. 68. 715 (1988).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • François M. Peeters
    • 1
  1. 1.Department of PhysicsUniversity of Antwerp (U.I.A.)AntwerpenBelgium

Personalised recommendations