Advertisement

Theory of Ballistic Quantum Transport through a 1D Constriction

  • E. Tekman
  • S. Ciraci
Part of the NATO ASI Series book series (NSSB, volume 214)

Abstract

In this paper the ballistic quantum transport through a 1D constriction in a 2D electron gas is investigated using a refined formalism. The quantization of the conductance at integer multiples of 2e 2/h is found to be the main property of these quantum point contacts. The agreement and discrepancies with the experiments and the existing theories are summarized. Special emphasis is given to the effects of the constriction geometry and finite temperature. Some unresolved aspects of the experiments are clarified on this basis.

Keywords

Resonance Structure Working Party Quantum Conductance Quantum Point Contact Refined Formalism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Landauer, IBM J. Res. Develop. 1, 233 (1957); Z. Phys. B68, 217 (1987).Google Scholar
  2. 2.
    P. W. Anderson, D. J. Thouless, E. Abrahams and D. S. Fisher, Phys. Rev. B22, 3519 (1980).MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    M. Büttiker, Phys. Rev. B33, 3020 (1986); Y. Imry, in Directions in Condensed Matter Physics, ed. G. Grinstein, G. Mazenko (World Scientific, Singapore, 1986 ), vol. 1, p. 102.Google Scholar
  4. 4.
    B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L. P. Kouwenhoven, D. van der Marel, and C. T. Foxon, Phys. Rev. Lett. 60, 848 (1988).ADSCrossRefGoogle Scholar
  5. 5.
    D. A. Wharam, T. J. Thornton, R. Newbury, M. Pepper, H. Rithcie and G. A. C. Jones, J. Phys C21, L209 (1988).ADSGoogle Scholar
  6. 6.
    A. D. Stone, “Theory of Quantum Conductance of a Narrow Constriction”, Working Party on Electron Transport in Small Systems, held in Trieste, 1988, unpublished; A. Szafer, A. D. Stone, Phys. Rev. Lett. 62, 300 (1989).ADSCrossRefGoogle Scholar
  7. 7.
    D. van der Marel, “Oscillations in the Sharvin Point Contact Resistance”, Working Party on Electron Transport in Small Systems, held in Trieste, 1988, unpublished; E. G. Haanapel, D. van der Marel, Phys. Rev. B39, No. 11 (1989).Google Scholar
  8. 8.
    N. García, “Oscillatory Quantum Elastic Resistances of Small Contacts: Holes, Constrictions, Tube Precursors ”, Working Party on Electron Transport in Small Systems, held in Trieste, 1988, unpublished.Google Scholar
  9. 9.
    G. Kirczenow, Solid State Commun. 68, 715 (1988).ADSCrossRefGoogle Scholar
  10. 10.
    E. Tekman, S. Ciraci, Phys. Rev. B39, No. 11 (1989).Google Scholar
  11. 11.
    Yu. V. Sharvin, Zh. Eksp. Teor. Fiz. 48, 984 (1965) (Soy. Phys.—JETP 21, 655 (1965)).Google Scholar
  12. 12.
    D. E. Khmelnitskii, “Reflectionless Quantum Transport and Fundamental Steps of Ballistic Resistance in Microconstrictions”, Working Party on Electron Transport in Small Systems, held in Trieste, 1988, unpublished.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • E. Tekman
    • 1
  • S. Ciraci
    • 1
  1. 1.Department of PhysicsBilkent UniversityBilkent 06533 AnkaraTurkey

Personalised recommendations