SOD Mimicking Properties of Copper (II) Complexes: Health Side Effects

  • Gérard Lapluye
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 264)


Controlled regulation of the Superoxide ion in living systems is an important challenge, due to the multiple pathological involvements of this radicalion.


Copper Complex Picolinic Acid Copper Zinc Superoxide Dismutase Phenanthroline Complex Histidine Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    E. GETZOFF, J.A. TAINER, P.K. WEINER, P.A. KOLLMAN, J.S. RICHARDSON, D.C. RICHARDSON-Electrostatic recognition between Superoxide and copper zinc Superoxide dismutase. Nature 306,17, 287–90 (1983).CrossRefGoogle Scholar
  2. (2).
    S.A. ALLISON, J.A. Mc CAMMON-Dynamics of substrate binding to copper zinc SOD J. Phys.Chem. 89, 1072–74 (1985).CrossRefGoogle Scholar
  3. (3).
    S.A. ALLISON, G. GANTI, J.A. Mc CAMMON-Simulation of the diffusion controlled reaction between Superoxide and SOD. -I -Simple models. Biopolymers 24, 1323–36 (1985).PubMedCrossRefGoogle Scholar
  4. (4).
    A. DESIDERI, M. FALCONI, V. PARISI, S. MORANTE, G. ROTILIO-Is the activity linked electrostatic gradient of bovine Cu Zn Superoxide dismutases conserved in homologous enzymes irrespective of the number and distribution of charges ?-Free Radical in Biology and Medicine 5, 313–17 (1988).CrossRefGoogle Scholar
  5. (5).
    J. RABANI, D. KLUG-ROTH, J. LILIE-Pulse radiolytic investigations of the catalyzed disproportionation of peroxy radicals. Aqueous cupric ions-J. Phys-Chem. 77, 9, 1169–75 (1973).CrossRefGoogle Scholar
  6. (6).
    M. McADAM, E. FIELDEN, F. LAVELLE, L. CALABRESE, D. COCCO, G. ROTILIO-The involvement of the bridging imidazolate in the catalytic mechanism of action of bovine SOD. Biochem.J. 167, 271–4 (1977).PubMedGoogle Scholar
  7. (7).
    J. HUET, M. JOUINI, L. ABELLO, G. LAPLUYE-Structural study of copper oligopeptide complexes -I -Oxidized glutathione-Cu(II) system. J.Chim.Phys. 81, 7/8, 505–11 (1984).Google Scholar
  8. (8).
    M. JOUINI, G. LAPLUYE, J. HUET, R. JULIEN, C. FERRADINI-Catalytic activity of a copper (II) -Oxidized glutathione complex on aqueous Superoxide ion dismutation-J. Inorg.Biochem. 26, 269–80 (1986).PubMedCrossRefGoogle Scholar
  9. (9).
    M. YOUNES, U. WESER-SOD activity of copper penicillamine : Possible involvement of Cu (I) stabilized sulphur radical. Biochem. Biophys. Research Comm. 78, 4, 1247–53 (1977).CrossRefGoogle Scholar
  10. (10).
    P. ROBERTSON Jr, I. FRIDOVICH-Does Copper-D-Penicillamine Catalyze the dismutation of O2 ? Arch. Biochem.Biophys. 203, 2, 830–31 (1980).CrossRefGoogle Scholar
  11. (11).
    D. KLUG-ROTH, J. RABANI-Pulse radiolytic studies on reactions of aqueous Superoxide radicals with copper(II) complexes. J.Phys.Chem. 80, 6, 588–91 (1976).CrossRefGoogle Scholar
  12. (12).
    J. WEINSTEIN, B.H.J. BIELSKI-Reaction of Superoxide radicals with copper (II) histidine complexes. J.A.C.S. 102, 4916–19 (1980).Google Scholar
  13. (13).
    B.M. KATZ, V.I. STENBERG-Catalytic activity of ethylene-bridged aminoacid-copper (II) complexes for the dismutation of Superoxide. Polyhedron 4, 12, 2031–38 (1985).CrossRefGoogle Scholar
  14. (14).
    S. GOLDSTEIN, G. CZAPSKI-Mechanisms of the dismutation of Superoxi de catalyzed by the copper (II) phenanthroline complex and of the oxidation of the copper (I) phenanthroline complex by oxygen in aqueous solution. J.A.C.S. 105, 7276–80 (1983).Google Scholar
  15. (15).
    D.E. CABELLI, B.H.J. BIELSKI, J. HOLCMAN-Interaction between copper (II)-arginine complexes and HO2/O2 radicals, a pulse radiolysis study. J.A.C.S. 109, 3665–69 (1987).Google Scholar
  16. (16).
    U. WESER, C. RICHTER, A. WENDEL, M. YOUNES. Reactivity of antiinflammatory and Superoxide dismutase active copper(II)-salicylates. Bioinorg. Chem. 8, 3, 201–13 (1978).Google Scholar
  17. (17).
    W.H. BANNISTER, J.V. BANNISTER, A.J.F. SEARLE, P.J. THORNALLEY-The reaction of Superoxide radicals with metal picolinate complexes. Inorganica Chim.Act. 78, 139–42 (1983).CrossRefGoogle Scholar
  18. (18).
    W.H. KOPPENOL, F. LEVINE, T.L. HATMAKER, J. EPP, J.D. RUSH-Catalysis of Superoxide dismutation by manganese aminopolycarboxylate complexes. Arch. Biochem. Biophys. 251, 2, 594–99 (1986).CrossRefGoogle Scholar
  19. (19).
    A. SAMUNI, M. CHEVION, G. CZAPSKI-Unusual copper-induced sensitization of the biological damage due to Superoxide radicals. J.Biol. Chem. 256, 24, 12632–35 (1981).Google Scholar
  20. (20).
    K.S. KUMAR, C. ROWSE, P. HOCHSTEIN-Copper induced generation of Superoxide in human red cell membrane-Biochem. Biophys. Research Comm. 83, 2, 587–92 (1978).CrossRefGoogle Scholar
  21. (21).
    K.A. REICH, L.E. MARSHALL, D.R. GRAHAM, D.S. SIGMAN-Cleavage of DNA by the 1,10-phenanthroline-copper ion complex. Superoxide mediates the reaction dependent on NADH and hydrogen peroxide. J.A.C.S. 103, 3582–84 (1981).Google Scholar
  22. (22).
    S. GOLDSTEIN, G. CZAPSKI-Mechanisms of the reactions of some copper complexes in the presence of DNA with O2, H2O2 and molecular oxygen. J.A.C.S. 108, 2244–50 (1986).Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Gérard Lapluye
    • 1
  1. 1.Laboratoire de Chimie-PhysiqueUniversité Paris 7Paris Cedex 05France

Personalised recommendations