Protein Oxidation and Proteolytic Degradation General Aspects and Relationship to Cataract Formation

  • Kelvin J. A. Davies
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 264)


The past few years have seen an explosion of knowledge on the subject of intracellular protein degradation. The view that lysosomes (or rather intra-lysosomal proteases) are primarily responsible for degrading intracellular proteins has now been discredited, and a large number of cytoplasmic proteolytic enzymes have been discovered. It now appears that lysosomes are mostly responsible for the degradation of cellular organelles, whereas most cytoplasmic proteins are degraded by soluble, cytoplasmic proteinases, proteases, and peptidases.1


Glutamine Synthetase Lens Crystallins Cataract Formation Proteolytic System Lens Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. S. Bond and P. E. Butler, Intracellular proteases, Annu. Rev. Biochem. 56:333 (1987).PubMedCrossRefGoogle Scholar
  2. 2.
    K. J. A. Davies, Intracellular proteolytic systems may function as secondary antioxidant defenses: An hypothesis, J. Free Radicals Biol. Med. 2:155 (1986).CrossRefGoogle Scholar
  3. 3.
    K. J. A. Davies, Protein damage and degradation by oxygen radicals. I. General aspects, J. Biol. Chem. 262:9895 (1987).PubMedGoogle Scholar
  4. 4.
    K. J. A. Davies, M. E. Delsignore, and S. W. Lin, Protein damage and degradation by oxygen radicals. II. Primary structure, J. Biol. Chem. 262:9902 (1987).PubMedGoogle Scholar
  5. 5.
    K. J. A. Davies and M. E. Delsignore, Protein damage and degradation by oxygen radicals. III. Secondary and tertiary structure, J. Biol. Chem. 262:9908 (1987).PubMedGoogle Scholar
  6. 6.
    K. J. A. Davies, S. W. Lin, and R. Pacifíci, Protein damage and degradation by oxygen radicals. IV. Degradation of denatured protein, J. Biol. Chem. 262:9914 (1987).PubMedGoogle Scholar
  7. 7.
    S. P. Wolff, A. Garner, and R. T. Dean, Free radicals, lipids, and protein degradation, Trends Biochem. Sci. (TIBS) 11:27 (1986).Google Scholar
  8. 8.
    A. Hershko and A. Ciechanover, Mechanisms of intracellular protein breakdown, Annu. Rev. Biochem. 51:335 (1982).PubMedCrossRefGoogle Scholar
  9. 9.
    A. L. Goldberg and F. J. Dice, Intracellular protein degradation in mammalian and bacterial cells, Annu. Rev. Biochem. 43:835 (1974).PubMedCrossRefGoogle Scholar
  10. 10.
    A. L. Goldberg and A. C. St. John, Intracellular protein degradation in mammalian and bacterial cells. II, Annu. Rev. Biochem. 45:747 (1976).PubMedCrossRefGoogle Scholar
  11. 11.
    A. L. Goldberg and L. Waxman, The role of ATP hydrolysis in the breakdown of proteins and peptides by protease La from Escherichia coli ,J. Biol. Chem. 260:12029 (1985).PubMedGoogle Scholar
  12. 12.
    B. J. Hwang, W. J. Park, C. H. Chung, and A. L. Goldberg, Escherichia coli contains a soluble ATP-dependent protease (Ti) distinct from protease La, Proc. Natl. Acad. Sci. U. S. A. 84:5550 (1987).PubMedCrossRefGoogle Scholar
  13. 13.
    K. J. A. Davies and A.L. Goldberg, Oxygen radicals stimulate intracellular proteolysis and lipid peroxidation by independent mechanisms in erythrocytes, J. Biol. Chem. 262:8220 (1987).PubMedGoogle Scholar
  14. 14.
    K. J. A. Davies and A. L. Goldberg, Proteins damaged by oxygen radicals are rapidly degraded in extracts of red blood cells, J. Biol. Chem. 262:8227 (1987).PubMedGoogle Scholar
  15. 15.
    A. Taylor and K. J. A. Davies, Protein oxidation and diminished proteolytic capacity in cataract formation during aging, Free Radical Biol. Med. 3:371 (1987).CrossRefGoogle Scholar
  16. 16.
    K. J. A. Davies and S. W. Lin, Degradation of oxidatively.denatured proteins in Escherichia coli, Free Radical Biol. Med. 5:215 (1988).CrossRefGoogle Scholar
  17. 17.
    K. J. A. Davies and S. W. Lin, Oxidatively denatured proteins are degraded by an ATP independent pathway in Escherichia coli ,Free Radical Biol. Med. 5:225 (1988).CrossRefGoogle Scholar
  18. 18.
    D. C. Salo, S. W. Lin, R. E. Pacifíci, and K. J. A. Davies, Superoxide dismutase is preferentially degraded by a proteolytic system from red blood cells following oxidative modification by hydrogen peroxide, Free Radical Biol. Med. 5:335 (1988).CrossRefGoogle Scholar
  19. 19.
    O. Marcillat, Y. Zhang, S. W. Lin, and K. J. A. Davies, Mitochondria contain a proteolytic system which can recognize and degrade oxidatively denatured proteins, Biochem. J. 254:677 (1988).PubMedGoogle Scholar
  20. 20.
    O. Marcillat, Y. Zhang, and K. J. A. Davies, Oxidative and non-oxidative mechanisms in the inactivation of cardiac mitochondrial electron transport chain components by doxorubicin, Biochem. J. 254:677 (1988).PubMedGoogle Scholar
  21. 21.
    K. J. A. Davies, Proteolytic systems as secondary antioxidant defenses, in: Cellular Antioxidant Defense Mechanisms,C. K. Chow, ed., Vol. 2, p. 25, CRC Press, Boca Raton (1988).Google Scholar
  22. 22.
    K. J. A. Davies, Free radicals and protein degradation in human red blood cells, in: Cellular and Molecular Aspects of Aging: The Red Cell as a Model,J. W. Eaton, D. K. Konzen, and J. G. White, eds., p. 15, Alan R. Liss, New York (1985).Google Scholar
  23. 23.
    K. J. A. Davies, The role of intracellular proteolytic systems in antioxidant defenses, in: Superoxide and Superoxide Dismutase in Chemistry, Biology, and Medicine,G. Rotillio, ed., p. 443, Elsevier, Amsterdam (1986).Google Scholar
  24. 24.
    K. J. A. Davies, Protein oxidation, protein cross-linking, and proteolysis in the formation of lipofuscin: Rationale and methods for the measurement of protein degradation, in: Lipofuscin 1987: State of the Art,I. Zs.-Nagy, ed., p. 109, Elsevier Science, Amsteram (1988).Google Scholar
  25. 25.
    K. J. A. Davies, Oxidative stress causes protein degradation and lipid peroxidation by different mechanisms in red blood cells, in: Lipid Peroxidation in Biological Systems,A. Sevanian, ed., p. 100, American Oil Chemists Society, Champaign, Ilinois (1988).Google Scholar
  26. 26.
    K. J. A Davies, Possible importance of proteolytic systems as secondary antioxidant defenses during ischemia-reperfusion injury, in: The Role of Oxygen Radicals in Cardiovascular Diseases,A. L’Abbate and F. Ursini, eds., p. 143, Kluwer Academic Publishers, Dortrecht (1988).Google Scholar
  27. 27.
    R. E. Pacifici, S. W. Lin, and K. J. A Davies, The measurement of protein degradation in response to oxidative stress, in: Oxygen Radicals in Biology and Medicine,M. G. Simic and K. A. Taylor, eds., p. 531, Plenum Press, New York (1988).Google Scholar
  28. 28.
    K. J. A Davies, Intracellular proteolytic systems as secondary antioxidant defenses, in: Oxygen Radicals in Biology and Medicine,M. G. Simic and K. A. Taylor, eds., p. 575, Plenum Press, New York (1988).Google Scholar
  29. 29.
    R. E. Pacifici and K. J. A. Davies, A 700-kDa proteinase which selectively degrades oxidatively denatured hemoglobin, FASEB J. 2:A1007 (1988).Google Scholar
  30. 30.
    K. J. A Davies, S. W. Lin, and R. E. Pacifici, The degradation of oxidatively denatured proteins: A housekeeping function of M. O. P., International Committee on Proteolvsis (I. C. O. P.) Newsletter, p. 3, August (1988).Google Scholar
  31. 31.
    A Taylor, B. Blondin, K. J. A Davies, and K. Murakami, Relationships between ascorbate levels, accumulation of damaged proteins, and proteolytic capabilities in the presence and absence of photooxidative stress to the guinea pig eye lens, Abstracts of the fourth International Congress on Oxygen Radicals, W-20 (1987).Google Scholar
  32. 32.
    K. Murakami, J. H. Jahngen, S. W. Lin, K. J. A Davies, and A Taylor, A lens protease which shows enhanced rates of degradation of oxidatively modified alpha-crystallin, Free Radical Biol. Med. (1989, in press).Google Scholar
  33. 33.
    R. L. Levine, C. N. Oliver, R. M. Fulks, and E. R. Stadtman, Turnover of bacterial glutamine synthetase: oxidative inactivation precedes proteolysis, Proc. natl. Acad. Sci. U. S. A 78:2120 (1981).PubMedCrossRefGoogle Scholar
  34. 34.
    R. T. Dean and J. K. Pollak, Endogenous free radical generation may influence proteolysis in mitochondria, Biochem. Biophvs. Res. Commun. 126:1082 (1985).CrossRefGoogle Scholar
  35. 35.
    R. T. Dean, S. M. Thomas and A Garner, Free-radical-mediated fragmentation of monoamine oxidase in the mitochondrial membrane, Biochem. J. 240:489 (1986).PubMedGoogle Scholar
  36. 36.
    S. P. Wolff and R. T. Dean, Fragmentation of proteins by free radicals and its effect on their susceptibility to enzymatic hydrolysis, Biochem. J. 234:399 (1986).PubMedGoogle Scholar
  37. 37.
    L. Fucci, C. N. Oliver, M. J. Coon, and E. R. Stadtman, Inactivation of key metabolic enzymes by mixed-function oxidation reactions: Possible implication in protein turnover and aging, Proc. Natl. Acad. Sci. U. S. A 80:1521 (1983).PubMedCrossRefGoogle Scholar
  38. 38.
    R. L. Levine, Oxidative inactivation of glutamine synthetase: I. Inactivation is due to loss of one histidine residue, J. Biol. Chem. 258:11823 (1983).PubMedGoogle Scholar
  39. 39.
    R. L. Levine, Oxidative modification of glutamine synthetase: II. Characterization of the ascorbate model system, J. Biol. Chem. 258:11828 (1983).PubMedGoogle Scholar
  40. 40.
    K. Nakamura and E. R. Stadtman, Oxidative inactivation of glutamine synthetase subunits, Proc. Natl. Acad. Sci. U. S. A 81:2011 (1984).PubMedCrossRefGoogle Scholar
  41. 41.
    A.J. Rivett, Preferential degradation of the oxidatively modified form of glutamine synthetase by intracellular mammalian proteases, J. Biol. Chem. 260:300 (1985).PubMedGoogle Scholar
  42. 42.
    E. R. Stadtman and M. E. Wittenberger, Inactivation of Escherichia coli glutamine synthetase by xanthine oxidase, nicotinate hydroxylase, horseradish peroxidase, or glucose oxidase: effects of ferredoxin, putidaredoxin and manadione, Ach. Biochm. Biophvs. 239:379 (1985).PubMedGoogle Scholar
  43. 44.
    J. E. Roseman and R. L. Levine, Purification of a protease from Escherichia coli with specificity for oxidized glutamine synthetase, J. Biol. Chem. 252:2101 (1987).Google Scholar
  44. 45.
    R. Hough, G. Pratt, M. Rechsteiner, J. S. Bond, and M. Orlowski, A rose by any other name’-or opinions of naming enzymes, International Committee on Proteolvsis (I. C. O. P.) Newsletter, p. 3, January (1988).Google Scholar
  45. 46.
    A J. Rivett, The multicatalytic proteinase of mammalina cells, Arch. Biochem. Biophvs. 268:1 (1989).CrossRefGoogle Scholar
  46. 47.
    L. Waxman, J. M. Fagan, and A L. Goldberg, Demonstration of two distinct high molecular weight proteases in rabbit reticulocytes, one of which degrades ubiquitin conjugates, J. Biol. Chem. 262:2451 (1987).Google Scholar
  47. 48.
    R. Hough, G. Pratt, and M. Rechsteiner, Purification of two high molecular weight proteases from rabbit reticulocyte lysates, J. Biol. Chem. 262:8303 (1987).PubMedGoogle Scholar
  48. 49.
    J. Cervera and R. L. Levine, Modulation of the hydrophobicity of glutamine synthetase by mixed function oxidation, FASEB J. 2:2591 (1988).PubMedGoogle Scholar
  49. 50.
    A.-P. Arrigo, K. Tanaka, A L. Goldberg, and W. J. Welch, Identity of the 195 ’prosome’ particle with the large multifunctional protease complex of mammalian cells (the proteasome), Nature 331:192 (1988).PubMedCrossRefGoogle Scholar
  50. 51.
    J. J. Harding and M. J. C. Crabbe, The lens: development, proteins, metabolism and cataract, in: The Eye,M. Davson, ed., Vol. IB, p. 207, Academic Press, New York (1984).Google Scholar
  51. 52.
    A. M. J. Blow, Proteolyses in the lens, in: Proteinase in Mammalian Cells and Tissues,A. J. Barrett, ed., North Holland Publishing Co., New York, p. 501 (1979).Google Scholar
  52. 53.
    H. J. Hoenders and H. Bloemendal, Aging of lens proteins, in: Molecular and Cellular Biology of the Lens,H. Bloemendal, ed., p. 279, John Wiley and Sons (1981).Google Scholar
  53. 54.
    J. J. Harding, Changes in lens proteins in cataract, in: Molecular and Cellular Biology of the Lens,H. Bloemendal, ed., John Wiley and Sons, New York, p. 327 (1981).Google Scholar
  54. 55.
    S. D. Varma, D. Chand, Y. R. Sharma, J. R. Kuck, Jr., and R. D. Richards, Oxidative stress on lens and cataract formation: role of light and oxygen, Curr. Eve Res. 3:35 (1984).CrossRefGoogle Scholar
  55. 56.
    J. S. Zigler and J. D. Goosey, Singlet oxygen as a possible factor in human senile nuclear cataract development, Curr. Eve Res. 3:59 (1984).CrossRefGoogle Scholar
  56. 57.
    J. S. Zigler, H. M. Jernigan, N. S. Perlmutter, nd J. H. Kinoshita, Photodynamic cross-linking of polypeptides in intact rat lens, Exp. Eve Res. 35:239 (1982).Google Scholar
  57. 58.
    S. D. Varma, S. Kumar, and R. D. Richards, Light induced damage to ocular lens cation pumpprevention by vitamin C., Proc. Natl. Acad. Sci. 76:3501 (1979.CrossRefGoogle Scholar
  58. 59.
    M. H. Garner and A. Spector, Selective oxidation of systeine and methionine in normal and senile cataractous lenses, Proc. Natl. Acad. Sci. U. S. A. 77:1274 (1980).PubMedCrossRefGoogle Scholar
  59. 60.
    O. Roy, J. Dillon, W. Wada, W. Chaney, and A. Spector, Nondisulfide polymerization of gamma and beta crystallin in the humn lens, Proc. Natl. Acad. Sci. U. S. A. 81:2878 (1984).PubMedCrossRefGoogle Scholar
  60. 61.
    J. S. Zigler, Jr. and H. H. Hess, Cataracts in the Royal College of Surgeon rats: evidence for initiation by oipid peroxidation products, E.p. Eve Res. 41:67 (1985).CrossRefGoogle Scholar
  61. 62.
    S. Zigman, The role of sunlight in human cataract formation,Survey of Cataract Formation27:317 (1983).Google Scholar
  62. 63.
    J. Blondin, V. Baragi, E. Schwartz, J. A. Sadowski, and A. Taylor, Delay of UV-induced eye lens protein damage in guinea pigs by dietary ascorbate, J. Free Radicals Biol. Med. 2:275 (1986).CrossRefGoogle Scholar
  63. 64.
    J. Blondin and A. Taylor, Measures of leucine aminopeptidase can be used to anticipate UV induced age-related damage to lens proteins, Mech. Aging Develop. 41:39 (1987).CrossRefGoogle Scholar
  64. 65.
    N. H. Ansari, A. Schulter, and S. K. Srivastava, Antioxidant (BHT) significantly delays galactose cataract formation, Invest. Ophthalmol. Vis. Sci. 28:192 (1987).Google Scholar
  65. 66.
    K. K. Sharma and B. J. Ortwerth, Isolation and characterization of a new aminopeptidase from bovine lens, J. Biol. Chem. 261:4295 (1986).PubMedGoogle Scholar
  66. 67.
    H. Yoshida, T. Murachi, and I. Tsukahara, Distribution of calpain I, calpain II, and calpastatin in bovine lens, Invest. Ophthalmol. Vis. Sci. 25:953 (1985).Google Scholar
  67. 68.
    D. A. Eisenhauer and A Taylor, protease activities in cultured bovine lens epithelial cells of various passage, Invest. Ophthalmol. Vis. Sci. 28:384 (1987).Google Scholar
  68. 69.
    A. Taylor, Leucine aminopeptidase activity is diminished in aged hog, beef and human lens, in: Intracellular Protein Catabolism,D. Kharallah, J. S. Bond, and J. W. C. Bird, eds., p. 299, Alan R. Liss, New York (1985).Google Scholar
  69. 70.
    G. R. McCarty and A Taylor, comparison of aminopeptidase sensitivity of Mn2+ and bestatin in bovine, human and rabbit lens, Int. Soc. Eve Res. 148 (1984).Google Scholar
  70. 71.
    G. R. McCarty and A Taylor, Resolution and partial purification of new aminopeptidase activities in beef lens, Fed. Proc. 44:878 (1985).Google Scholar
  71. 72.
    K. R. Fleshman, J. W. Margolis, S. C. J. Fu, and B. J. Wagner, Age changes in bovine lens endopeptidase activity, Mech. of Ageing and Develop. 31:37 (1985).CrossRefGoogle Scholar
  72. 73.
    C. Ohrloff, O. Hichwin, R. Olson, and S. Dickman, Glutathione peroxidase, glutathione reductase and Superoxide dismutase in the aging lens, Curr. Eye Res. 3:109 (1984).Google Scholar
  73. 74.
    A. Ferrara, Respirazione e glicolisi del cristallino di cavie sottoposte a diéta scorbutigena, Annali D. Ottalmolog. E. Clin. Oculistica 68:529 (1940).Google Scholar
  74. 75.
    N. K. Monjukowa and M. J. Fradkin, Neue experimentelle Befunde über die pathogenese der katarakt, Archiv für Ophthalmoligie (Abrecht von Graefes) 133:329 (1935).Google Scholar
  75. 76.
    R. Hill and C. F. Mills, Chemical composition of blood, in: The Biochemists Handbook,C. Long, ed., p. 839, Van Nostrand, Princeton (1968).Google Scholar
  76. 77.
    R. Heyninger, The component parts of the eye, in: The Biochemists Handbook,C. Long, ed., p. 706, Van Nostrand, Princeton (1968).Google Scholar
  77. 78.
    J. Bellows, Biochemistry of the lens VII, Some studies on vitamin C and the lens, Arch. Ophthalmol. (Chicago) 16:58 (1936).CrossRefGoogle Scholar
  78. 79.
    B. Nakamura and O. Nakamura, über das vitamin C in der linse and dem kammerwasser der menschlichen katarakte, Graefes Ach. Clin. Ophthalmol. 134:197 (1935).CrossRefGoogle Scholar
  79. 80.
    H. K. Muller and W. Buschke, Vitamin C in linse, kammerwasser and blut bei normalen und pathologischem liasenstoffwechsel, Ach. Augenheilkd 108:368 (1934).Google Scholar
  80. 81.
    J. Berger, D. Shephard, F. Morrow, J. Sadowski, T. Haùe, and A Taylor, Reduced and total ascorbate in guinea pig eye tissues in response to dietary intake, Curr. Eve Res. 7:681 (1988).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Kelvin J. A. Davies
    • 1
  1. 1.Institute for Toxicology & Department of BiochemistryThe University of Southern CaliforniaLos AngelesUSA

Personalised recommendations