Parkinson’s Disease and Alzheimer’s Disease :Neurodegenerative Disorders Due to Brain Antioxidant System Deficiency ?

  • Irène Ceballos
  • France Javoy-Agid
  • André Delacourte
  • André Defossez
  • Annie Nicole
  • Pierre-Marie Sinet
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 264)


Parkinson disease (PD) and Alzheimer’s disease (AD), the two most common types of adult chronic degenerative disorders of the central nervous system are characterized by degeneration of certain populations of neurons with relative sparing of other groups of nerve cells (1). Dysfunction of at-risk neurons is associated with several types of cytoskeletal pathology including neurofibrillary tangles (NFT), granulovacuolar degeneration, senile plaques, in AD and Lewy bodies in PD. Dysfunction and death of neurons lead to the clinical syndromes of PD and AD. The bradykinesia and rigidity of PD are associated with lesions in the nigrostriatal dopaminergic systems, whereas the dementia of AD is attributed to abnormalities of neurons in monoaminergic brainstem nuclei,cholinergic basal forebrain , and neuronal populations within amygdala, hippocampus and neocortex (1).


sUbstantia Nigra Parkinson Disease Paired Helical Filament Paired Helical Filament Nigrostriatal Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.L.Price, P.J.Whitehouse and R.G.Struble, cellular pathology in Alzheimer’s and Parkinson’s disease, TINS, 29 (1986).Google Scholar
  2. 2.
    G.Cohen, the pathobiology of Parkinson’s disease: biochemical aspects of dopamine neuron senescence, J.Neural Transm., 19:89 (1983).Google Scholar
  3. 3.
    R.J.Marttila, H.Lorentz and U.K.Rinne, oxygen toxicity protecting enzymes in Parkinson’s disease, J.Neurol.Sci., 86:321 (1988).PubMedCrossRefGoogle Scholar
  4. 4.
    D.Dexter, C.Carter, F.Agid, Y.Agid, A.J.Lees, P.Jenner and CD. Marsden, lipid peroxidation as cause of nigral cell death in Parkinson’s disease, Lancet, 639 (1986).Google Scholar
  5. 5.
    A.Delacourte, A.Defossez, I.Ceballos, A.Nicole and P.M Sinet, preferential localisation of copper- zinc Superoxide dismutase in the vulnerable cortical neurons in Alzheimer’s disease, Neurosci.Lett., 92:247 (1988).CrossRefGoogle Scholar
  6. 6.
    J.M.C.Gutteridge, free-radicals damage to lipids, aminoacids,carbohydrates and nucleic acids determined by thiobarbituric acid reactivity, Int.J.Biochem., 14:649 (1982).PubMedCrossRefGoogle Scholar
  7. 7.
    J.A.Imlay, S.M.Chin and S.Linn, toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science, 240:640 (1988).PubMedCrossRefGoogle Scholar
  8. 8.
    P.H.Chan, M.Yurko and R.A. Fishman, phospholipids degradation and cellular edema by free radicals in brain cortical slices. J.Neurochem., 38:525 (1982).PubMedCrossRefGoogle Scholar
  9. 9.
    P.M.Sinet, metabolism of oxygen derivatives in Down’s syndrome. Ann.N.Y.Acad.Sci.USA, 396:83 (1982).CrossRefGoogle Scholar
  10. 10.
    I.Fridovich, Superoxide dismutases, In: Advances in enzymology and related areas of modern biology, A.Meister, ed., New York (1986).Google Scholar
  11. 11.
    B.Halliwell and M.C.Gutteridge, oxygen radicals and the nervous system.Trends Neurosci., 8:22 (1985).CrossRefGoogle Scholar
  12. 12.
    T.L.Perry, D.V.Godin and S.Hansen, Parkinson’s disease: a disorder due to nigral glutathione deficiency?, Neurosci. Lett., 33:305 (1982).PubMedCrossRefGoogle Scholar
  13. 13.
    S . J . Kish, C . Morito and O . Hornykiewics, glutathione peroxidase activity in Parkinson’s disease brain, Neurosci.Lett., 58:343 (1985).PubMedCrossRefGoogle Scholar
  14. 14.
    . R . N . Martins, C . G . Harper, G . B . Stokes and C . L . Masters, increased glucose-6-phosphate dehydrogenase activity in Alzheimer’s disease may reflect oxydative stress, J.Neurochem., 46:1042 (1986).PubMedCrossRefGoogle Scholar
  15. l5.
    D . B . Calne and J . W Langston, the etiology of Parkinson’s disease, Lancet, 2:1457 (1983).PubMedCrossRefGoogle Scholar
  16. 16.
    T . L . Perry and V . W . Yong, Idiopathic Parkinson disease, progressive supranuclear palsy and glutathione metabolism in the substantia nigra, Neurosci.Lett., 67:269 (1986).PubMedCrossRefGoogle Scholar
  17. 17.
    B . K . Sinha, Y . Singh and G . Krishna, formation of Superoxide and hydroxyl radicals from 1-methyl-4-phenylpyridinium ion (MPP+): reductive activation by NADPH cytochrome P450 reductase, Biochem.Biophys.Res.Comun., 135:583 (1986).CrossRefGoogle Scholar
  18. 18.
    G.Cohen, R . E . Heikkila and D . Mac-Namee, the generation of hydrogen peroxide, Superoxide radical and hydroxyl radical by 6- hydroxydopamine, dialuric acid and related cytotoxic agents . J . Biol . Chem., 249:2447 (1974).PubMedGoogle Scholar
  19. 19.
    M . J . Bannon, M . Goedert and B . Williams, the possible relation of glutathione, melanin and 1-methyl-4-phenyl-l,2,5,6- tetrahydropyridine (MPTP) to Parkinson’s disease, Biochem.Pharmacol., 33:2697, (1984).PubMedCrossRefGoogle Scholar
  20. 20.
    H . S . Maker, C . Weiss, D . G . Silides and G . Cohen, coupling of dopamine oxidation to glutathione oxidation via the generation of hydrogen peroxide in rat brain homogenates, J . Neurochem., 36:589 (1981).PubMedCrossRefGoogle Scholar
  21. 21.
    P.L.Mc.Geer, E.G.Mc.Geer and J.S.Suzuki, aging and extrapyramidal function, Arch.Neurol., 34:33 (1977).CrossRefGoogle Scholar
  22. 22.
    D.Harman, The aging process, Proc.Natl.Acad.Sci.USA, 78:7124 (1981).PubMedCrossRefGoogle Scholar
  23. 23.
    L.M.Ambani, M.H.Van Waert and S.Murphy, Brain peroxidase and catalase in Parkinson’s disease, Arch.Neurol., 32:114 (1975)PubMedCrossRefGoogle Scholar
  24. 24.
    D.T.Dexter, F.R.Weils, F.Agid, Y.Agid, A.J.Lees, P.Jenner and C.D.Marsden, Increased nigral iron content in postmortem parkinsonian brains, Lancet, 2:1219 (1987).PubMedCrossRefGoogle Scholar
  25. 25.
    J.Mc Gregor and F.Labella, Manganese neurotoxicity : a model of free radical induced neurodegeneration ?, Can.J.Physiol. Pharmacol., 60:1398 (1982).CrossRefGoogle Scholar
  26. 26.
    C.Rios and R.Tapia, Changes in lipid peroxidation induced by 1-methyl-4-phenyl-l,2,3,6-tetrahydropyridine and 1-methyl-4- phenyl-pyridinium in mouse brain homogenates, Neurosci.Lett., 77:321 (1987).PubMedCrossRefGoogle Scholar
  27. 27.
    J.Poirier and A.Barbeau, a catalyst function for MPTP in Superoxide formation, Biochem.Biophys.Res.Commun., 131:1284 (1985).PubMedCrossRefGoogle Scholar
  28. 28.
    J.Poirier, J.Donaldson and A.Barbeau, The specific vulnerability of the substantia nigra to MPTP is related to the presence of transition metals, Biochem. Biophys. Res.Commun., 128:25 (1985).PubMedCrossRefGoogle Scholar
  29. 29.
    A. Barbeau, L. Dallaire, N. T. Buu, J. Poirier and E. Runcinska, Comparative behavioral, biochemical and pigmentary effects of MPTP, MPP+ and paraquat in rana pipiens, Life sciences, 37:1529 (1986).CrossRefGoogle Scholar
  30. 30.
    V.W.Yong, T.L.Perry and A.A.Krisman, Depletion of glutathione in brainstem of mice caused by N-Methyl-4-phenyl 1,2,3,6-tetrahydro-pyridine is prevented by antioxydant pretreatment, Neurosci. Lett., 63:56 (1986).PubMedCrossRefGoogle Scholar
  31. 31.
    T.L.Perry, V.W.Yong, R.M.Clavier, K.Jones, J.M.Wright, J.G.Foulks and R.A.Wall, Partial protection from the dop5\minergic neurotoxin N-methyl-4-phenyl-1,2,3,6 tetrahydropyridine by four different antioxidants in the mouse, Neurosci. Lett., 60:109 (1985).PubMedCrossRefGoogle Scholar
  32. 32.
    M.D.Nefzger, F.A.Quadfosel and V.C.Karl, A retrospective study of smoking and Parkinson’s disease, Amer.J.Epidemiol., 88:149 (1968).Google Scholar
  33. 33.
    C.A.Calton, F.S.Calton and D.L.Gilbert, Changes in synaptic transmission produced by hydrogen peroxide. J.Free Radic.Biol. Med., 2:141 (1986).CrossRefGoogle Scholar
  34. 34.
    T.Dyrks, A.Weidemann, G.Multhaup, J.M. Salbaum, H.G.Lemaire, J.Kong, B.Muller-Hill, C.L.Masters and K.Beyreuther, Identification, transmembrane orientation and biogenesis of the amyloid A4 precursor of Alzheimer’s disease, EMBO J, 7:949, (1988).PubMedGoogle Scholar
  35. 35.
    F.P.Zemlan, O.J.Thienshaus and H.B.Bosmann, Superoxide dismutase activity in Alzheimer’s disease : possible mechanism for paired helical filament formation, Brain Res. (1988), in press.Google Scholar
  36. 36.
    S.L.Marklund, R.Adolfson, C.Gottfries and B.Winblad, Superoxide dismutase isoenzymes in normal brains and in brains from patients with dementia of Alzheimer’s type, J.Neurol.Sci., 67:319 (1985).PubMedCrossRefGoogle Scholar
  37. 37.
    I.Ceballos, F.Agid, A.Delacourte, E.Hirsch, P.M.Sinet and Y.Agid. Preferential localization of copperzinc Superoxide dismutase in the injured hippocampal neurons in Alzheimer’s disease, Neurosci.Abst., 437.1, 1083 (1988).Google Scholar
  38. 38.
    O.Elroy-Stein and Y.Groner, Impaired neurotransmitter uptake in PC12 cells overexpressing human CuZn SOD- Implication for gene dosage effects in Down’s Syndrome. Cell, 52:259 (1988).PubMedCrossRefGoogle Scholar
  39. 39.
    B.W.L. Brooksbank and R.Balazs. Superoxide dismutase, glutathione peroxidase and lipoperoxidation in Down’s Syndrome fetal brain, Develop.Brain.Res., 16:37 (1984).CrossRefGoogle Scholar
  40. 40.
    O.K.E.Wisniewski, H.M.Wisniewski and G.Y.Wen, Occurence of neuropathological changes and dementia of Alzheimer’s disease in Down’s Syndrome, Ann. Neurol., 17:278 (1985).PubMedCrossRefGoogle Scholar
  41. 41.
    I.Ceballos, J.M.Delabar, A.Nicole, R.E.Lynch, R.A. Hallewell, P.Kamoun and P.M.Sinet, Expression of transfected human CuZn Superoxide dismutase gene in mouse L cells and NS2OY neuroblastoma cells induces enhancement of glutathione peroxidase activity, Biochim.Biophys.Acta, 58:59 (1988).Google Scholar
  42. 42. Marchena, M.Guarnieri and G.Mc Khann, Glutathione peroxidase levels in brain, J.Neurochem, 22:773 (1974).PubMedCrossRefGoogle Scholar
  43. 43.
    Y.Nadia, P.L.Mc Geer and E.G. Mc Geer, Lipid peroxides in brain during aging and vitamin E deficiency, Neurobiol.Aging, 3:173 (1982).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Irène Ceballos
    • 1
  • France Javoy-Agid
    • 1
  • André Delacourte
    • 1
  • André Defossez
    • 1
  • Annie Nicole
    • 1
  • Pierre-Marie Sinet
    • 1
  1. 1.Laboratoire de Biochimie Génétique, CNRS URA 1335Hopital NeckerParisFrance

Personalised recommendations