Oxidants, Joint Inflammation and Anti-Inflammatory Strategies

  • Ewa J. Dowling
  • Vivienne R. Winrow
  • Peter Merry
  • David R. Blake
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 264)


Biological reduction of molecular oxygen in cells is accompanied by the production of dangerously reactive free radical and non-radical oxygen species. Because of the ubiquity of molecular oxygen and its ability to accept electrons, their production is readily associated with cellular damage1.


Reactive Oxygen Species Synovial Fluid Adjuvant Arthritis Inflammatory Joint Disease Homogentisic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. A. Freeman and J. D. Crapo, Biology of disease: free radicals and tissue injury, Lab. Invest. 47: 412–426 (1982).PubMedGoogle Scholar
  2. 2.
    B. Halliwell and J. M. C. Gutteridge, Iron as a biological pro-oxidant, ISI Atlas Sci. Biochem. 1: 48–52 (1988).Google Scholar
  3. 3.
    J. M. C. Gutteridge, Free radical damage to lipids, amino acids, carbohydrates and nucleic acids determined by TBA reactivity, Int. J. Biochem. 14: 649–653 (1982).PubMedCrossRefGoogle Scholar
  4. 4.
    T. F. Slater, Free radical mechanisms in tissue injury, Biochem. J. 222; 1–15 (1984).PubMedGoogle Scholar
  5. 5.
    D. Rowley, J. M. C. Gutteridge, D. R. Blake and B. Halliwell, Lipid peroxidation in rheumatoid arthritis: TBA activity and catalytic iron salts in synovial fluid from RA. Clin. Sci. 66: 691–695 (1984).PubMedGoogle Scholar
  6. 6.
    D. R. Blake, R. E. Allen and J. Lunec, Free radicals in biological systems -A review orientated to inflammatory processes. Br. Med. Bull. 43: 371–385 (1987).PubMedGoogle Scholar
  7. 7.
    H. Burkhardt, M. Schwingel, H. Menninger, H. W. Macartney andGoogle Scholar
  8. H. Tschesche, Oxygen radicals are effectors of cartilage destruction, Arth.Rheum. 29: 379–387 (1986).CrossRefGoogle Scholar
  9. 8.
    R. A. Greenwald and W. W. Moy, Effect of oxygen derived free radicals on hyaluronic acid, Arth.Rheum. 23: 455–463 (1980).CrossRefGoogle Scholar
  10. 9.
    B. Halliwell, J. M. C. Gutteridge and D. R. Blake, Metal ions and oxygen radical reactions in human inflammatory joint disease. Phil. Trans. R. Soc. London, 311: 659–671 (1985).CrossRefGoogle Scholar
  11. 10.
    M. Larramendy, A. C. Mello-Filho, E. A. L. Martins and R. Meneghini, Iron-mediated induction of sister-chromatid exhanges by hydrogen peroxide and Superoxide anion. Mutat. Res. 178: 57–63 (1987).PubMedCrossRefGoogle Scholar
  12. 11.
    H. Carp and A Janoff, In vitro suppression of serum elastase inhibitory capacity by reactive oxygen species generated by phagocytosing polymorphonuclear leucocytes, J. Clin. Invest. 63: 793–797 (1979).PubMedCrossRefGoogle Scholar
  13. 12.
    B. Halliwell, J. R. Hoult and D. R. Blake, Oxidants, inflammation and anti-inflammatory drugs, FASEB J. 2: 2867–2873 (1988).PubMedGoogle Scholar
  14. 13.
    J. P. Clavel., J. Emerit and A. Thullier, Lipid peroxidation and free radicals. Role in cellular biology and in pathology, Path. Biol. 33: 61–69 (1985) .Google Scholar
  15. 14.
    J. Lunec, D. R. Blake, S. J. McCleary, S. Brailsford and P. A. Bacon, Self-perpetuating mechanisms of immunoglobulin G aggregation in rheumatoid inflammation, J. Clin. Invest. 76: 2084–2090 (1985).PubMedCrossRefGoogle Scholar
  16. 15.
    E. J. Dowling, The role of lipid peroxidation in inflammation, PhD Thesis, University of Surrey, Guildford, U.K. (1985).Google Scholar
  17. 16.
    J. Lunec, A. Wakefield, S. Brailsford and D. R. Blake, Free radical altered IgG and its interaction with rheumatoid factor, ±n: Free radicals, cell damage and disease, C. Rice-Evans, ed., Richelieu Press, London, 50;241–261 (1986).Google Scholar
  18. 17.
    E. J. Dowling, A. M. Symons and D. V. Parke, Free radical production at site of an acute inflammatory reaction as measured by chemiluminescence, Agents Actions, 19: 203–207 (1986).PubMedCrossRefGoogle Scholar
  19. 18.
    G. Rowley, J. M. C. Gutteridge, D. R. Blake, M. Farr and B. Halliwell, Lipid peroxidation in RA, thiobarbituric acid reactive material and catalytic iron salts in synovial fluid from rheumatoid patients. Clin. Sci. 66: 691–695 (1984).Google Scholar
  20. 19.
    J. Lunec, S. P. Halloran, A. G. White and T. L. Dormandy, Free radical oxidation (peroxidation) products in serum ana synovial fluid in RA, J. Rheum. 8: 233–245 (1981).PubMedGoogle Scholar
  21. 20.
    S. Humad, E. zarling, M. Clapper and J. L. Skosey, Breath pentane excretion as a marker of disease activity in rheumatoid arthritis, Free Rad. Res. Comm. 5: 101–6 (1988).Google Scholar
  22. 21.
    J. P. Martin and B. Batkoff, Homogentisic acid autoxidation and oxygen radical generation: implications for the aetiology of alcaptonuric arthritis, Free Rad. Biol. Med. 3: 241–250 (1987).PubMedCrossRefGoogle Scholar
  23. 22.
    K. Lund-Oleson, Oxygen tension in synovial fluids, Arth.Rheum. 13: 769–776 (1970).CrossRefGoogle Scholar
  24. 23.
    S. W. Edwards, M. B. Hallet and A. K. Campbell, Oxygen radical production may be limited by oxygen concentration, Biochem. J. 217: 851–854 (1984).PubMedGoogle Scholar
  25. 24.
    T. Woodruff, D. R. Blake, J. Freeman, F. J. Andrews, P. Salt and J. Lunec, Is chronic synovitis an example of reperfusion injury? Ann. Rheum. Dis. 45: 608–611 (1986).PubMedCrossRefGoogle Scholar
  26. 25.
    J. M. McCord, Oxygen-derived free radicals in postischaemic tissue injury, New Eng. J. Med. 312: 159–163 (1985).PubMedCrossRefGoogle Scholar
  27. 26.
    D. N. Granger, M. Sennet Effect of local arterial hypotension on cat intestinal permeability, Gastroenterology, 79: 474–480 (1980).PubMedGoogle Scholar
  28. 27.
    D. N. Granger, G. Rutili and J. M. McCord, Superoxide radicals in feline intestinal ischaemia, Gastroenterology, 81: 22–29 (1981).PubMedGoogle Scholar
  29. 28.
    J. R. Stewart, W. H. Blackwell., S. L. Crute, V. Loughlin Prevention of myocardial ischaemia reperfusion injury with oxygen free radical scavengers, Surg. Forum, 33: 317–320 (1982).Google Scholar
  30. 29.
    R. B. Jennings, K. A. Reimer, M. A. Hill and S. E. Mayer, Total ischaemia in dogs hearts I. A comparison of high energy phosphate production, utilisation and depletion ana of adenine nucleotide catabolism in total ischaemic in vitro, Circ. Res. 49: 892–900 (1981) .PubMedGoogle Scholar
  31. 30.
    E. Delia Corte and F. Stirpe, The regulation of rat liver xanthine oxidase: involvement of thiol groups in the conversion of the enzyme activity from the dehydrogenase (type D) to the oxidase (type O) and purification of the enzyme, Biochem. J. 126: 739–743 (1972).PubMedGoogle Scholar
  32. 31.
    W. Cao, J. M. Carney, A. Duchon, R. A. Floyd and M Chevion, Oxygen free radical involvement in ischaemia and reperfusion injury to brain, Neuroscience Letters, 88: 233–238 (1988).PubMedCrossRefGoogle Scholar
  33. 32.
    C. Canavese, P. Stratta and A Vercellone, The case for oxygen free radicals in the pathogenesis of ischaemic acute renal failure, Nephron. 49: 9–15 (1988).PubMedCrossRefGoogle Scholar
  34. 33.
    D. R. Blake, P. Merry, J. Unsworth, B. Kidd, J. M. Outhwaite, R. Ballard, C. J. Morris, L. Gray and J. Lunec, Hypoxic-reperfusion injury in the inflamed human joint, Lancet i: 289–293 (1989).CrossRefGoogle Scholar
  35. 34.
    M. I. V. Jayson, A. St.J. Dixon, Intra-articular pressure in rheumatoid arthritis of the knee I. Pressure changes during passive joint distension, Ann. Rheum. Dis. 29: 261–265 (1970).PubMedCrossRefGoogle Scholar
  36. 35.
    M. I. V. Jayson and A. St.J. Dixon, Intra-articular pressure in rheumatoid arthritis of the knee II. Pressure changes during joint use. Ann. Rheum. Dis. 29: 401–408 (1970).PubMedCrossRefGoogle Scholar
  37. 36.
    P. S. Treuhaft and D. J. McCarty, Synovial fluid pH, lactate, oxygen and carbon dioxide partial pressure in various joint diseases. Arthritis Rheum. 14: 475–484 (1971).PubMedCrossRefGoogle Scholar
  38. 37.
    A. I. Richman, E. Y. Su and G. Ho, Reciprocal relationship of synovial fluid volume and oxygen tension, Arthritis Rheum. 24: 701–705 (1981).PubMedCrossRefGoogle Scholar
  39. 38.
    K. H. Falchuk, E. J. Goetzl and N. P. Kulka, Respiratory gases of synovial fluids, Am. J. Med. 49: 223–231 (1970).PubMedCrossRefGoogle Scholar
  40. 39.
    J. L. Zweier, P. Kuppusamy and G. A. Lutty, Measurement of endothelial cell free radical generation. Evidence for a central mechanism of free radical injury in postischaemic tissues, Proc. Natl. Acad. Sci. U.S.A. 85: 4046–4050 (1988).PubMedCrossRefGoogle Scholar
  41. 40.
    R. E. Allen, J. M. Outhwaite, C. J. Morris and D. R. Blake, Xanthine oxidoreductase is present in human synovium, Ann. Rheum. Dis. 46: 843–845 (1987).PubMedCrossRefGoogle Scholar
  42. 41.
    S. L. Marklund, E. Holme and L. Hellner, Superoxide dismutase in extra cellular fluids, Clin. Chim. Acta, 126: 41–51 (1982).PubMedCrossRefGoogle Scholar
  43. 42.
    K. Karlsson and S. L. Marklund, Heparin-induced release of extracellular superoxide dismutase to human blood plasma, Biochem. J. 242: 55–59 (1987).PubMedGoogle Scholar
  44. 43.
    S. L. Marklund, SOD, catalase and GSH peroxidase in degenerative disease, Bull. Europ. Physiopath. Resp.17: 259 (1981).Google Scholar
  45. 44.
    E. Munthe, E. Kass, E. Jellum, Evidence for enhanced radical scavenging prior to drug response in RA, Adv. Inflam. Res. 3: 211–235 (1982).Google Scholar
  46. 45.
    L. Flohe, Superoxide dismutase for therapeutic use: clinical experience, dead ends and hopes, Molec. Cell Biochem, 84:123–131 (1988).PubMedCrossRefGoogle Scholar
  47. 46.
    J. M. McCord, Free radicals and inflammation protection of synovial fluid by SOD, Science, 185: 529–531 (1974).PubMedCrossRefGoogle Scholar
  48. 47.
    M. U. Dianzani, M. V. Torrielli, L. Paradisi and J. S. Franzone, Influence of antioxidants and oxygen scavengers on experimental Inflammatory processes, Eur. J. Rheum. Inflamm. 1: 187–196 (1978).Google Scholar
  49. 48.
    K. Hirschelmann and H. Bekemeier, Effects of catalase, peroxidase, SOD and 10 scavengers of O2 radicals in carrageenin oedema and in adjuvant arthritis in rats, Experientia, 37: 1313 (1981).PubMedCrossRefGoogle Scholar
  50. 49.
    A. M. Michelson, K. Puget, G. Jadot, Anti-inflammatory activity of Superoxide dismutase: comparison of enzymes from different sources in different models in rats; mechanism of action, Free Radical Res. Commun. 2: 43–56 (1986).CrossRefGoogle Scholar
  51. 50.
    W. Huber, Orgotein -(bovine Cu-Zn, SOD) an anti-inflammatory protein drug: discovery, toxicology and pharmacology, Europ. J. Rheum. Inflamm. 4: 173–192 (1981).Google Scholar
  52. 51.
    R. A. Greenwald, Therapeutic benefits of oxygen radical scavenger treatments remain unproven, J. Free Rad. Biol. 1: 173–177 (1985).CrossRefGoogle Scholar
  53. 52.
    G. Szegli, A Herold, E. Negut Clinical efficacy of a new antiinflammatory drug with free radical scavenging properties: Superoxide dismutase (SOD) and catalase of human origin, Arch. Roum. Pathol. Exp. Microbiol. 45: 75–89 (1986).PubMedGoogle Scholar
  54. 53.
    K. H. Schmidt, Efficacy of vitamin E as a drug in inflammatory joint diseases, SFRR Abstracts, Paris Meeting 1988.Google Scholar
  55. 54.
    F. J. Andrews, Effect of nutritional iron deficiency on acute and chronic inflammation, Ann. Rheum. Dis. 46: 859–865 (1987).PubMedCrossRefGoogle Scholar
  56. 55.
    F. J. Andrews, C. J. Morris, G. Kondratowicz and D. R. Blake, Effect of iron chelation on inflammatory joint disease, Ann. Rheum. Dis. 46: 327–333 (1987).PubMedCrossRefGoogle Scholar
  57. 56.
    P. G. Winyard, D. R. Blake, S. Chirico, J. M. C. Gutteridge and J. Lunec, Mechanism of exacerbation of rheumatoid synovitis by totaldose iron-dextran infusion: in vivo demonstration of iron-promoted oxidative stress, Lancet i: 69–72 (1987).CrossRefGoogle Scholar
  58. 57.
    D. R. Blake, P. Winyard, J. Lunec,Cerebral and ocular toxicity induced by desferrioxamine, Quart. J. Med. 56: 345–355 (1985).PubMedGoogle Scholar
  59. 58.
    M. Grootveld and B. Halliwell, Aromatic hydroxylation as a potential measure of hydroxyl radical formation in vivo. Identification of hydroxylated derivatives of salicylate in human body fluids, Biochem. J. 237: 499–504 (1986).PubMedGoogle Scholar
  60. 59.
    E. J. Dowling, A. M. Symons and M. K. Jasani, the ex-vivo measurement of malondialdehyde and chemiluminescence as possible indices for antiinflammatory drug evaluation, Int. J. Tiss. Reac. IX(5): 385–391 (1987).Google Scholar
  61. 60.
    B. Halliwell, J. R. Hoult and D. R. Blake, Oxidants, inflammation and anti-inflammatory drugs, FASEB J. 2: 2867–2873 (1988).PubMedGoogle Scholar
  62. 61.
    J. R. J. Sorenson, Copper chelates as possible active forms of the antiarthritic agents, J. Med. Chem. 19: 135–148 (1976).PubMedCrossRefGoogle Scholar
  63. 62.
    H. Chwalinska-Sadowska and J. Bacon, The effect of D-penicillamine on polymorphonuclear function, J. Clin. Invest. 58: 871–879 (1976).PubMedCrossRefGoogle Scholar
  64. 63.
    E. Longfelder and E. F. Elstner, Determination of the `Superoxide dismutating activity of D-penicillamine copper, Hoppe-Seyler*s J. Physiol. Chem. 359: 751–757 (1978).Google Scholar
  65. 64.
    P. E. Lipsky, Immunosuppression by D-penicillamine in vitro. Inhibition of human T lymphocyte proliferation by copper -or caeruloplasmin independent generation of hydrogen peroxide and protection by monocytes, J. Clin. Invest, 73: 53–65 (1984).PubMedCrossRefGoogle Scholar
  66. 65.
    T. Matsubara, R. Saura, K. Hirohata and M. Ziff, Inhibition of human endothelial cell proliferation in vitro and neovascularisation in vivo by D-penicillamine, J. Clin. Invest. 83: 158–167 (1989).PubMedCrossRefGoogle Scholar
  67. 66.
    B. S. Polla, A Role for heat shock proteins in inflammation, Immunology Today, 9: 134–137 (1988).PubMedCrossRefGoogle Scholar
  68. 67.
    V. R. Winrow, I. L. McLean, C. J. Morris and D. R. Blake, The heat shock protein response and its role in inflammatory disease, Ann. Rheum. Dis. 1989 (in press).Google Scholar
  69. 68.
    F. Ritossa, A new puffing pattern induced by temperature shock and DNP in Drosophila, Experientia, 18: 571–3 (1962).CrossRefGoogle Scholar
  70. 69.
    S. Lindquist, The heat shock response, Ann. Dev. Biochem. 55: 1151–1159 (1986).CrossRefGoogle Scholar
  71. 70.
    W. J. Welch, The mammalian heat shock (or stress) response: A cellular defence mechanism, Adv. Exp. Mod. Biol. 228: 287–304 (1987).Google Scholar
  72. 71.
    W. van Eden, J. E. R. Thole, R van der Zee, Cloning of the mycobacterial epitope recognised by T lymphocytes in adjuvant arthritis, Nature, 331: 171–173 (1988).PubMedCrossRefGoogle Scholar
  73. 72.
    I. L. McLean, V. R. Winrow, P. I. Mapp, A. H. Cherrie, J. R. Archer and D. R. Blake, Synovial fluid T cells and 65kD heat-shock protein, Lancet ii: 856–857 (1988).Google Scholar
  74. 73.
    J. J. Sciandra, J. R. Subjeck and C. S. Hughes, Induction of glucoseregulated proteins during anaerobic exposure and of heat-shock proteins after reoxygenation, Proc. Natl. Acad. Sci. (USA) 81: 4843–7 (1984).CrossRefGoogle Scholar
  75. 74.
    S. M. Keyse and R. M. Tyrrell, Haeme oxygenase is the major 32kD stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide and sodium arsenite, Proc. Natl. Acad. Sci. (USA) 86: 99–103 (1989).CrossRefGoogle Scholar
  76. 75.
    T. Kubo, C. A. Towle, H. J. Makin and B. V. Tradwell, Stress-induced proteins in chrondrocytes from patients with osteoarthritis, Arthritis Rheum. 28: 1140–5 (1985).PubMedCrossRefGoogle Scholar
  77. 76.
    B. Perez-Maceda, C. Bernaben, J. P. Lopez-Bote, A. Marquet and V. Larraga, Autoantibodies from rheumatoid arthritis patients recognise antigens on the synoviocyte surface, Scand. J. Immunol. 27: 295–304 (1988).CrossRefGoogle Scholar
  78. 77.
    G. Tsoulfa, G. A. W. Rook and J. D. A. van Embden , Raised serum IgG and IgA antibodies to mycobacterial antigens in rheumatoid arthritis, Ann. Rheum. Dis. 48: 118–23 (1988).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Ewa J. Dowling
    • 1
  • Vivienne R. Winrow
    • 1
  • Peter Merry
    • 1
  • David R. Blake
    • 1
  1. 1.The Inflammation GroupThe London Hospital Medical CollegeLondonUK

Personalised recommendations