Skip to main content

Antioxidant Activity in Fetal and Neonatal Lung

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 264))

Abstract

Preterm infants, especially those born 8–15 weeks prematurely, have a high risk of developing respiratory distress syndrome [RDS]. RDS is caused by a relative lack of pulmonary surfactant and is characterized by areas of lung collapse and the deposition of protein containing hyaline membranes within the alveolus (Battenburg, 1982). RDS is treated by positive pressure ventilation together with supplemental oxygen; the success of this therapy can be seen by the greater than 50% survival rate of infants delivered as early as 26 weeks of gestation in many centres.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aebi, H., 1984, Catalase in vitro, Meth. Enzvmol., 105, 121–126.

    Article  CAS  Google Scholar 

  • Battenburg, J. J., 1982, in Lung Development, Clinical Perspectives, Vol 1, pp. 359–390, P. M. Farrel ed., Academic Press

    Google Scholar 

  • Beutler, E., 1979, Glutathione peroxidase, in: Red Cell Metabolism. A manual of Biochemical Methods 2nd edition, pp. 71–73, Grune and Stratton, New York.

    Google Scholar 

  • Frank, L. and Sosenko, I. R. S., 1987, Prenatal development of lung antioxidant enzymes in four species, J. Pediatr., 110:106–110.

    Article  PubMed  CAS  Google Scholar 

  • Freeman, B. A. and Crapo, J. P., 1981, Hyperoxia increases oxygen radical production in rat lungs and lung mitochondria, J. Biol. Chem., 256, 10986–10992.

    PubMed  CAS  Google Scholar 

  • Freeman, B. A., Topolsky, M. K. and Crapo, J. P., 1982, Hyperoxia increases oxygen radical production in rat lung homogenates, Biochem. Biophys., 216:477–484.

    Article  CAS  Google Scholar 

  • Fryer, A. A., Hume, K. and Strange, R.C., 1986, The development of glutathione S-transferase and glutathione peroxidase activities in human lung, BBA, 883:448–453

    PubMed  CAS  Google Scholar 

  • Gerdin, E., Tyden, O. and Eriksson, U. J., 1985, The development of antioxidant enzymatic defence in the perinatal rat lung, Pediatr. Res., 198:687–691.

    Google Scholar 

  • Gould, V. E., Tosco, R., Wheelis, R. G., Gould, N. S. and Kapanci, Y., 1972, Oxygen pneumonitis in man: Ultrastructural observations on the development of alveolar lesions, Lab. Invest., 26:499–508.

    PubMed  CAS  Google Scholar 

  • Halliwell, B. and Gutteridge, J. M. C., 1984, Oxygen toxicity, oxygen radicals, transition metals and disease, Biochem. J., 219:1–14.

    PubMed  CAS  Google Scholar 

  • Hass, M.A. and Massaro, D., 1987, Developmental regulation of rat lung Cu/Zn Superoxide dismutase, Biochem. J., 246:697–703.

    PubMed  CAS  Google Scholar 

  • Kapanci, Y., Weibel, E. R., Kaplan, H. P. and Robinson, F. R., 1969, Pathogenesis and reversibility of the pulmonary lesions of oxygen toxicity in monkeys II. Ultrastructural and morphometric studies, Lab Invest, 20:101–17

    PubMed  CAS  Google Scholar 

  • Lowry, O. H., Rosenbrough, N. J., Farr, A. L. and Randall, 1951, Protein measurement with the Folin reagent, J. Biol. Chem., 193:265–275.

    PubMed  CAS  Google Scholar 

  • Marklund, S. L., 1985, Pyrogallol autoxidation, in: CRC Handbook of Methods for Oxygen Radical Research, pp. 243–247.

    Google Scholar 

  • Massaro, D., 1986, Oxygen: Toxicity and Tolerance, Hospital Practice, July 95–101.

    Google Scholar 

  • O’Brodovich, H. M. and Mellins, R.B., 1985, Bronchopulmonary Dysplasia, Am. Rev. Respir. Dis., 132:694–709.

    PubMed  Google Scholar 

  • Phillips, A. G. S., 1975, Pediatrics, 55:44–50.

    Google Scholar 

  • Smith, J. L., 1899, The pathological effects due to increase of oxygen tension in the air breathed, J. Physiol., 24:19–35.

    PubMed  CAS  Google Scholar 

  • Slater, T. F., 1984, Free radical mechanisms in tissue injury, Biochem.-J, 22:1–15.

    Google Scholar 

  • Sterzel, W., Bedford, P. and Eisenbrand, G., 1987, Automated determination of DNA using the Fluorochrome Heochrit 33258, Anal. Biochem., 147:462–567.

    Article  Google Scholar 

  • Strange, R. C., Cotton, W., Fryer, A. A., Drew, R., Bradwell, A. R. Marshall, T., Collins, M.F., Bell, J., Hume, R., 1988, Studies on the expression of Cu,Zn Superoxide dismutase in human tissues during development, BBA. 883:448–453.

    Google Scholar 

  • Tanswell, A. K. and Freeman, B. A., 1984, Pulmonary antioxidant enzyme maturation in the fetal and neonatal rat, Pediatr. Res., 18:584–587.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

McElroy, M., Postle, T., Kelly, F. (1990). Antioxidant Activity in Fetal and Neonatal Lung. In: Emerit, I., Packer, L., Auclair, C. (eds) Antioxidants in Therapy and Preventive Medicine. Advances in Experimental Medicine and Biology, vol 264. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5730-8_70

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5730-8_70

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5732-2

  • Online ISBN: 978-1-4684-5730-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics