Antioxidant Therapy in Hematological Disorders

  • Michael R. Clemens
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 264)


Numerous investigations indicate the involvement of free radical reactions in the pathogenesis of hemolytic diseases; i.e. in vitamin E deficiency, abnormal glutathione metabolism, decreased NADPH production (e.g. glucose-6-phosphate dehydrogenase deficiency), catalase deficiency, sickle cell disease, thalassemia, and paroxysmal nocturnal hemoglobinuria (1–3). Other conditions leading to free radical mediated anemia may be the anemia of chronic renal failure and Fanconi–s anemia. Many drugs induce oxidative hemolysis in both normal individuals (4) and in patients with a defect in red cell antioxidant capa city, such as glucose-6-phosphate dehydrogenase (G-6-PD) deficiency and vitamin E deficiency. The majority of these drugs are aromatic compounds containing amino, nitro, or hydroxy groups. Clinical studies with antioxidants treating free radical-mediated hemolysis are quite numerous. However, reports with valuable trials are rare. Therefore, only a few studies are presented here with results, obtained with patients suffering from G-6-PD deficiency and anemia of chronic renal failure who were treated with either vitamin E or deferoxamine.


Paroxysmal Nocturnal Hemoglobinuria Chelation Therapy Iron Chelation Therapy Fava Bean Tocopheryl Acetate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Chiu, B. Lubin, and S.D. Shohet, Peroxidative reactions in red cell biology, in: Free Radicals in Biology, Vol.V, W.A. Pryor, ed., Acadimic Press, New York, p. 115 (1982).Google Scholar
  2. 2.
    M.R. Clemens, H. Einsele, and H.D. Waller, The fatty acid composition of red cells deficient in glucose-6-phosphate dehydrogenase and their susceptibility to lipid peroxidation, Klin. Wochenschr., 63:578 (1985).PubMedCrossRefGoogle Scholar
  3. 3.
    M.R. Clemens, and H.D. Waller, Lipid peroxidation in erythrocytes, Chem. Phys. Lipids, 45:251 (1987).PubMedCrossRefGoogle Scholar
  4. 4.
    M.R. Clemens, H. Remmer, and H.D. Waller, Phenylhydrazineinduced lipid peroxidation of red blood cells in vitro and in vivo: monitoring by the production of volatile hydro carbons, Biochem. Pharmacol., 33:1715 (1984).PubMedCrossRefGoogle Scholar
  5. 5.
    M.R. Clemens, H. Einsele, C. Ladner, and H.D. Waller, Some new aspects on free radical reactions in red cell pathology, in: Free Radicals: Chemistry, Pathology and Medicine, C. Rice-Evans and T. Domandy, eds., Richelieu Press, London, p. 383 (1988).Google Scholar
  6. 6.
    S.P. Spielberg, L.A. Boxer, L.M. Corash, and J.D. Schulman, Improved erythrocyte survival with high-dose vitamin E in chronic hemolyzing G-6-PD and glutathione synthetase deficiencies., Ann. Intern. Med., 90:53 (1979).PubMedGoogle Scholar
  7. 7.
    L. Corash, S. Spielberg, C. Bartsocas, L. Boxer, R. Steinherz, M. Scheetz, M. Egan, J. Schlessleman, and J.D. Schulman, Reduced chronic hemolysis during high-dose vitamin E administration in Mediterranian-type glucose-6-phosphate dehydrogenase deficiency, N. Engl . J. Med., 303:416 (1980).PubMedCrossRefGoogle Scholar
  8. 8.
    J.G. Newman, T.B. Newman, L.J. Bowie, and J. Mendelsohn, An examination of the roll of vitamin E in glucose-6-phosphate dehydrogenase deficiency, Clin. Biochem., 12:149 (1979) .PubMedCrossRefGoogle Scholar
  9. 9.
    G.J. Johnson, G.T. Vatassery, B. Finkel, and D.W. Allen, High-dose vitamin E does not decrease the rate of chronic hemolysis in glucose-6-phosphate dehydrogenase deficiency, N. Engl. J. Med., 308:1014 (1983).PubMedCrossRefGoogle Scholar
  10. 10.
    M. Hafez, E.S. Amar, M. Zedan, H. Hammad, A.H. Sorour, E.S.A. El-Desonky, and N. Gamil, Improved erythrocyte sur vival with combined vitamin E and selenium therapy in children with glucose-6-phosphate dehydrogenase deficiency and mild chronic hemolysis, J. Pediatr., 108:558 (1986).PubMedCrossRefGoogle Scholar
  11. 11.
    H. Ekert, and I. Rawlinson, Deferoxamine and favism, N. Engl. J. Med., 312:1260 (1985).PubMedGoogle Scholar
  12. 12.
    T. Meloni, G. Forteleoni, and G.F. Gaetani, Desferrioxamine and favism, Br. J. Haematol., 63:394 (1986).PubMedCrossRefGoogle Scholar
  13. 13.
    G. Musci, I. Mavelli, and G. Rotilio, Evidence for Superoxide generation from the autoxidation of the favism-inducing aglycone divicine, Biochim. Biophys. Acta, 926:369 (1987).PubMedCrossRefGoogle Scholar
  14. 14.
    J.M.C. Gutteridge, Iron promoters of the Fenton reaction and lipid peroxidation can be released from haemoglobin by peroxides, FEBS Lett., 201:291 (1986).PubMedCrossRefGoogle Scholar
  15. 15.
    L.J. Machlin, Vitamin E, in: Handbook of Vitamins, L.J. Machlin, ed., Marcel Dekker, New York, p. 99 (1984).Google Scholar
  16. 16.
    R. Miniero, E. Canducci, D. Ghigo, P. Saracco, and C. Vullo, Vitamin E in beta-thalassemia , Acta Vitaminol. Enzymol., 4:21 (1982).PubMedGoogle Scholar
  17. 17.
    O. Giardini, A. Cantani, A. Donfrancesco, F. Martino, O. Mannarino, P. D’Eufemia, C. Miano, U. Ruberto, and R. Lubrano, Biochemical and clinical effects of vitamin E administration in homozygous beta-thalassemia, Acta Vitaminol . Enzymol., 7:55 (1985).PubMedGoogle Scholar
  18. 18.
    A. Cohen, Management of iron overload in the pediatric patient, Hematol. Oncol. Clin. North. Amer., 1:521 (1987).Google Scholar
  19. 19.
    J.W. Fisher, Mechanism of the anemia of chronic renal failure, Nephron, 25:106 (1980).PubMedCrossRefGoogle Scholar
  20. 20.
    Y. Yawata, R. Howe, and H.S. Jacob, Abnormal red cell metabolism causing hemolysis in uremia, Ann. Intern. Med., 79:362 (1973).PubMedGoogle Scholar
  21. 21.
    D.P. Cauhan, P.H. Gupta, M.R.N. Nampoothiri, P.C. Singhal, K.S. Chugh, and C.R. Nair, Clin. Chim. Acta, 123:153 (1982).CrossRefGoogle Scholar
  22. 22.
    M. Taccone-Galucci, O. Giardini, R. Lubrano, D. Bandino, V. Mazzarella, O. Mannarino, C. Meloni, M. Morosetti, M. Elli, C. Tozzo, L. Strolighi, and C.U. Casciani, Red blood cell lipid peroxidation in predialysis chronic renal failure, Clin. Nephrol., 27:238 (1987).Google Scholar
  23. 23.
    A. Miguel, A. Miguel, M. Linares, A. Perez, R. Moll, J. Sanchis, J.M. Escobedo, and J.M. Miguel-Borja, Evidence of an increased susceptibility to lipid peroxidation in red blood cells of chronic renal failure patients, Nephron, 50:64 (1988).PubMedCrossRefGoogle Scholar
  24. 24.
    F.J. De la Serna, M. Praga, F. Gilsanz, J.L. Rodicio, L.M. Ruilope, and J.M. Alcazar, Improvement in the erythropoiesis of chronic haemodialysis patients with desferrioxamine, Lancet, I: 1009 (1988).CrossRefGoogle Scholar
  25. 25.
    M.R. Clemens, M. Ruess, Z. Bursa, and H.D. Waller, The relationship between lipid composition of red blood cells and their susceptibility to lipid peroxidation, Free Rad. Res. Comms, 3:265 (1987).CrossRefGoogle Scholar
  26. 26.
    V. Sinsakul, J.R. Drake, J.N. Leavitt, B.R. Harrison, and C.D. Fitch, Lack of effect of vitamin E therapy on the anemia of patients receiving hemodialysis, Am. J. Clin. Nutr., 39:223 (1984).PubMedGoogle Scholar
  27. 27.
    K. Ono, Effect of large dose vitamin E supplementation on anemia in hemodialysis patients, Nephron, 40:440 (1985).PubMedCrossRefGoogle Scholar
  28. 28.
    M. Lillo-Ferez, B. Allain, C. Dupommereulle, P. Prieur, and M. Petrover, Inefficacy of vitamin E supplementation on anemia in hemodialysis patients, Nephron, 45:79 (1987).PubMedCrossRefGoogle Scholar
  29. 29.
    C. Tielemans, F. Collart, R. Wens, J. Smeyers -Verbeeke, J. van Hooff, M. Dratwa, and D. Verbeelen, Improvement of anemia with deferoxamine in hemodialysis patients with aluminium-induced bone disease, Clin. Nephrol., 24:237 (1985) .PubMedGoogle Scholar
  30. 30.
    J.M.C. Gutteridge, G.J. Quinlan, J. Clark, and B. Halliwell, Aluminium salts accelerate peroxidation of membrane lipids stimulated by iron salts, Biochim. Biophys. Acta, 835:441 (1985).PubMedGoogle Scholar
  31. 31.
    P. Altmann, D. Plowman, F. Marsh, and J. Cunningham, Aluminium chelation therapy in dialysis patients: evidence for inhibition of hemoglobin synthesis by low levels of aluminium, Lancet, I: 1012 (1988).CrossRefGoogle Scholar
  32. M.R. Clemens, C. Ladner, G. Ehninger, H. Einsele, W. Renn, E. Bühler, H.D. Waller, and K.F. Gey, Vitamin E and betacarotene decreased during radiochemo-therapy preceding bone marrow transplantation, Am. J. Clin. Nutr. , in pressGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Michael R. Clemens
    • 1
  1. 1.Medizinische Klinik und PoliklinikEberhard-Karls-Universität TübingenTübingen 1Federal Republic of Germany

Personalised recommendations