Advertisement

Antilipoperoxydant Effect of Trimetazidine in Post Ischaemic Acute Renal Failure in the Rat

  • Philippe Catroux
  • Jean Cambar
  • Nabil Benchekroun
  • Jacques Robert
  • Pascale Clauser
  • Catherine Harpey
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 264)

Abstract

Trimetazidine (TMZ) is an antianginal drug largely used in clinical ischaemic disorders. Whereas classical antianginal drugs act by correcting the imbalance between myocardial vascular supply and demand for oxygen, TMZ has been reported to exert a direct cytoprotective effect inside the real ischaemic area7,11. Several mechanisms of action seem to be involved. These include more particularly the reduction of the ischaemia induced intracellular acidosis and a more rapid recovery of phosphorylation processes during the early phase of blood reperfusion6,12,23. It has also been reported that TMZ exerts a potent antioxidant activity, which could explain its cardioprotective role during ischaemic and reperfusion phases10,15. Oxygen free radicals are now well known to contribute to kidney damages induced by a temporary warm or cold ischaemia13,21. Inhibitors of xanthine oxidase by preventing superoxyde radical production, superoxydismutases by removing superoxyde radicals and scavengers of hydroxyl radicals reduce renal injury following ischaemiareperfusion9,13,14. Moreover, several studies indirectly evidenced the production of free radicals following reflow in both warm and cold ischaemia by the presence of lipid peroxidation by products6,18,19,20.

Keywords

Oxygen Free Radical Diene Conjugate Cold Ischaemia Intracellular Acidosis Antianginal Drug 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.L. Backer, R.J. Corry and A.P. Autor, Oxygen free radical induced damage in kidneys subjected to warm ischemia and reperfusion : protective effect of superoxyde dismutase, Ann. Surg. 202 : 628–641 (1985).CrossRefGoogle Scholar
  2. 2.
    R.F. Beers and I.W. Sizer, A spectrophotometric method for measuring the breakdown of hydrogen peroxyde by catalase, J. Biol. Chem. 195 : 133 (1952).PubMedGoogle Scholar
  3. 3.
    J.V. Bonventre, Cellular response to ischemia, in : “Acute renal failure”, A. Whelton and K. Solez ed., Publisher New York, M. Dekker Inc.(1984).Google Scholar
  4. 4.
    P. Catroux, C. Dorian, C. Harpey and J. Cambar, Mise en évidence de l’effet protecteur de la trimétazidine vis-à-vis de l’enzymurie induite par clamipage du pédicule rénal chez le rat, Néphrologie 7 : 124 (1986).Google Scholar
  5. 5.
    P. Catroux, C. Dorian, C. Harpey and J. Cambar, Une autre approche de l’ischémie pour la mise en évidence de l’effet protecteur de la trimétazidine, Cone. Méd. 36S : 3451–3454 (1987).Google Scholar
  6. 6.
    C. Cruz, A. Zaoui, I. Ayoub, C. Harpey, P. Goupit and A. Younes, Altérations des myocytes isolés des ventricules de coeur de rat adulte : protection par la trimétazidine, Conc. Méd. 36S : 3470–3475 (1987).Google Scholar
  7. 7.
    D. Garnier and M.J. Roulet, Vasoactivity of trimétazidine on guinea-pig isolated ductus arterious, Br. J. Pharmac. 84 : 517–524 (1985).Google Scholar
  8. 8.
    C.J. Green, G. Healing, S. Simpkin, J. Lunec and B.J. Fuller, Desferioxamine reduces susceptibility to lipid peroxidation in rabbit kidneys subjected to warm ischemia and reperfusion, Comp. Biochem. Physiol. 85 : 113–117 (1986).Google Scholar
  9. 9.
    R. Hansson, O. Jonsson, S. Lundstam, S. Petterson, T. Schersten and J. Waidenstrom, Effects of free radical scavengers on renal circulation after ischemia in the rabbit, Clin. Sci. 65 : 605–610 (1983).PubMedGoogle Scholar
  10. 10.
    C. Harpey, C. Labrid, L. Baud, B. Housset, I. Maridonneau-Parini, F. Piccini and P. Goupit, Evidence for antioxidant properties of trimetazidine, Xth International Congress of Pharmacology Sydney (1987).Google Scholar
  11. 11.
    E. Honoré, M.M. Adamantidis, C.E. Challice and B.A. Chapuis, Cardioprotection by calcium antagonists, piridoxilate and trimetazidine, Ircs, Med. Sci. 14 : 938–939 (1986).Google Scholar
  12. 12.
    N. Lavanchy, J. Martin and A Rossi, Antiischemic effects of trimetazidine : P 31 NMR spectroscopy in the isolated rat heart, Arch. Int. Pharmacodyn. Ther. 286 : 97–110 (1987).PubMedGoogle Scholar
  13. 13.
    J.M. Mc Cord, Oxygen derived free radicals in post ischemic tissue injury, N. Engl. J. Med. 312 : 159–163 (1985).CrossRefGoogle Scholar
  14. 14.
    R.N. Mc Coy, K.E. Hill, M.A. Ayon, J.H. Stein and R.F. Burk, Oxidant stress following renal ischemia : changes in the glutathione redox ratio, Kidney Int. 35 : 812–817 (1988).CrossRefGoogle Scholar
  15. 15.
    I. Maridonneau-Parini and C. Harpey, Effect of trimetazidine on membrane damage induced by oxygen free radicals in human red cells, Br. J. Clin. Pharmacol. 20 : 148–151 (1985).PubMedGoogle Scholar
  16. 16.
    S. Marklund and G. Marklund, Involvement of superoxyde anion radical in the autoxidation of pyrogallol and a convenient assay for superoxyde dismutase, Eur. J. Biochem. 47 : 469 (1974).PubMedCrossRefGoogle Scholar
  17. 17.
    H. Okhawa, N. Ohishi and K. Yagi, Assay for lipid peroxydes in animal tissues by thiobarbituric acid reaction, Anal Biochem95 : 351–358 (1979).CrossRefGoogle Scholar
  18. 18.
    M.S. Paller, J.R. Hoidal and T.F. Ferris, Oxygen free radicals in ischaemic acute renal failure in the rat, J. Clin. Invest. 74 : 1156–1164 (1984).PubMedCrossRefGoogle Scholar
  19. 19.
    M.S. Paller and R.P. Hebbel, Ethane production as a mesure of lipid peroxidation after renal ischemia, Am. J. Physiol. 251 : F839–F843 (1986).PubMedGoogle Scholar
  20. 20.
    M.S. Paller, Hypothyroidism protects against free radical damage in ischemic acute renal failure, Kidney Int. 29 : 1162–1166 (1986).PubMedCrossRefGoogle Scholar
  21. 21.
    R.E. Ratych and G.B. Bulkley, Free radical-mediated post ischemic reperfusion injury in the kidney, J. Free Rad. Biol. Med. 2 : 311–319 (1986).CrossRefGoogle Scholar
  22. 22.
    R.O. Recknagel and E.A. Glende, Spectrophotometric detection of lipid conjugated dienes, Method. Enzymol. 105 : 331–337 (1984).CrossRefGoogle Scholar
  23. 23.
    J.F. Renaud, Internal pH, Na+, and Ca2+ regulation by trimetazidine during cardiac cell acidosis, Cardiovasc. Drugs and Ther. 1 : 677–686 (1988).CrossRefGoogle Scholar
  24. 24.
    F. Tietze, Enzymatic method for quantitative determination of nanogram amounts of total and oxidized glutathione : applications to mammalian blood and other tissues, Anal Biochem27 :502–522 (1969).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Philippe Catroux
    • 1
  • Jean Cambar
    • 1
  • Nabil Benchekroun
    • 2
  • Jacques Robert
    • 2
  • Pascale Clauser
    • 3
  • Catherine Harpey
    • 3
  1. 1.Faculté de Pharmacie de BordeauxG.E.P.P.R.France
  2. 2.Laboratoire de BiochimieFaculté Médecine de BordeauxFrance
  3. 3.IRIS Neuilly sur SeineFrance

Personalised recommendations